
American Journal of Applied Sciences 2 (5): 926-931, 2005
ISSN 1546-9239
© Science Publications, 2005

926

Model for Load Balancing on Processors
in Parallel Mining of Frequent Itemsets

1Ravindra Patel, 2S.S. Rana and 3K.R. Pardasani

1Department of Master in Computer Applications
Government Geetanjali Girl’s College, Bhopal (M.P.) India
2University Institute of Computer Science and Applications

Rani Durgawati University Jabalpur (M.P.) India
3Department of Mathematics and Computer Applications

Maulana Azad National Institute of Technology, Bhopal (M.P), India

Abstract: The existence of many large transactions distributed databases with high data schemas, the
centralized approach for mining association rules in such databases will not be feasible. Some
distributed algorithms have been developed [FDM, CD], but none of them have considered the
problem of data skews in distributed mining of association rules. The skewness of datasets reduces the
workload balancing between processors involved in distributed mining of association rules. It is
important to invent an efficient approach for distributed mining of association rules which have the
ability to generate homogeneous partitions of the whole data sets; hence the supports of most large
item sets are distributed evenly across the processors. We proposed an efficient stratified sampling
based partitioned technique, which generate homogeneous partitions on which processors works in
parallel and generate their local concepts approximately simultaneously.

Key words: Association rules, Data Mining, Data Skewness, Workload Balance, Parallel Mining,

Partitioning, Stratified Sampling

INTRODUCTION

 Association rule mining finds interesting
associative or correlative relationships among a large
set of data items. The problem was formulated
originally in the context of transaction data at the
supermarket.
 This market basket data consisst of transactions
made by each customer. Each transaction contains
items bought by the customer. The goal is to see if the
occurrence of certain items in a transaction can be used
to deduce occurrence of other items or in other words,
to find associative relationships between items. If such
interesting relationships are found, then they can be put
to various profitable uses such as self management,
inventory management, etc. Thus association rules were
born[1].
 Let I = { I1,I2, …………,Im} be a set of items. Let
D, be a set of database transactions where each
transaction T is a set of items such that T ⊆ I. Each
transaction is associated with an identifier, called T_ID
(transaction identity).
 Let A be a set of items. A transaction T is said to
contain A if and only if A ⊆ T. An association rule is an
implication of the form A =>B, where A ⊂ I, B ⊂ I and
A ∩ B=∅.
 The rule A =>B holds in the transaction set D with
supports, where s is the percentage of transactions in D

that contain A∪B. This is taken to be the probability, P
(A∪B).
 The rule A =>B has confidence c in the transaction
set D if c is the percentage of transactions in D
containing A that also contain B. This is taken to be the
conditional probability, P (B/A). That is:

support (A =>B) = P(A∪B)

confidence (A =>B) = P(B/A)

 Rules that satisfy both a minimum support
threshold (min_sup) and a minimum confidence
threshold (min_conf) are called strong. An utmost that
contain k items is a k-item sets. The set, {bread, butter}
is a 2-item set. The occurrence frequency of an itemset
is the number of transactions that contain the itemset.
This is also known as frequency of support count. An
itemset satisfies minimum support, if the occurrence
frequency of the utmost is greater than or equal to the
product of min_sup and the total number of transactions
in D. If an item set satisfies minimum support, then it is
a frequent item set. The set of frequent k-item sets are
commonly denoted by Lk. Association rule mining is a
two-step process. Find all frequent itemsets and
generate strong association rules from the frequent
itemsets.

American J. Applied Sci. 2 (5): 926-931, 2005

 927

Fig.1: Apriori Algorithm

 In this study, we concentrate on the most time
consuming process, which is the discovery of frequent
item set. The first algorithm that handled the problem of
generation of the frequent item set was the Apriori
algorithm[2]. This algorithm used a very fundamental
property for the support of item sets: An item set of size
k can meet the minimum level of support only if all of
its subsets also meet the minimum level of support.
This property used to systematically prune the search
space of desired itemsets, by increasing the length of
the itemsets being discovered. In an iteration k, all
candidate k-itemsets are formed such that all its (k-1)
subsets are frequent. The numbers of occurrences of
these candidates are then counted in the transaction
database. Efficient data structures are used to perform
the fast counting. Since its conception, many others
algorithm[3-10] have emerged that improve upon the
runtime, I/O and scalability performance of the Apriori
algorithm by various efficient means of pruning the
itemset search space and counting the candidate
occurrences in large databases.
 We assume that the database is a transactional
database with high data skewness. The database
consists of the huge amount of transaction records, each
with a transaction identifier (TID) and a set of data
items. The data mining in such databases requires
substantial processing power and parallel system is a
possible solution. This observation motivates us to
study efficient parallel algorithms for mining
association rules in large databases. The database is
partitioned ‘horizontally’ (i.e., grouped by transactions)
and each partition generated by using stratified
sampling to select a sample of transactions for a
partition. Allocate these partitions to the processors of
sites in distributed system which communicates via a
fast network. It has been well known that the major cost
of mining association rules is the computation of the set
of large itemsets (i.e. Frequently occurring sets of
items) in the database. An itemset (a set of items) is
large if the percentage of transactions that containing all
these items is greater than a given threshold.

Sequential Mining of Association Rules:
A priori Algorithm: The Apriori algorithm consists of
a number of passes Initially F1 contains all the items

(i.e., Item set of size one) that satisfy the minimum
support requirement. During pass k, the algorithm finds
the set of frequent itemsets Fk of size k that satisfy the
minimum support requirement. The algorithm
terminates when Fk has satisfied the minimum support
requirement. The algorithm terminates when Fk is
empty. In each pass, the algorithm first generates Ck the
candidate itemsets of size k. Function apriori_gen (Fk-1)
constructs Ck by extending frequent itemsets of size k –
1. This ensures that all the subsets of size k – 1 of a new
candidate itemset are in Fk–1. Once the candidate
itemsets are found, their frequencies are computed by
counting how many transactions contain these
candidate itemsets.
 Finally, Fk is generated by pruning Ck to eliminate
itemsets with frequencies smaller than the minimum

support. The union of the frequent itemsets, ∪ Fk, is the
frequent itemsets from which we generate association
rules.
 Computing the counts of the candidate itemsets is
the most computationally expensive steps of the
algorithm.

Parallel and Distributed Mining: The Count
Distribution (CD) algorithm is a simple data
parallelization algorithm. The database D is positioned
horizontally into D1, D2..Dn and distributed across n
processors Pi (1≤ i≤ n). It uses sequential Apriori
algorithms on each partition. The CD algorithm’s main
advantage is that it does not exchange data tuples
between processors, it only exchange counts. In the first
database scan, each processor generates its local
candidate itemsets depending on the items present in its
local partition. The algorithm obtains global support
counts by exchanging local support count with all other
processors. The algorithm communication overhead is
O (|c|. n) at each phase, where |c| and n are the size of
candidate itemsets and the number of data sets,
respectively.
 Researchers proposed FDM (Fast Distributed
Mining) algorithms to mine association rules from
distributed datasets partitioned among different sites[8].
At each site, FDMK find the local support counts and
prunes locally in frequent itemsets. After completing
local pruning, each site broadcasts messages containing
all the remaining candidate sets to all other sites to
collect their support counts. It then decides whether
locally large itemsets are globally large and generates the
candidate itemsets from those globally large itemsets.
 The FDM’s main advantages over CD is that it
reduces the communication overhead to O (|cp|. n),
where |cp| and n are number of large itemsets and the
number of sites. FDM generates fewer candidate
itemsets compared to CD, when the number of disjoint
candidate itemsets among various sites is large.
However, we can achieve this when different sites have
non homogenous data sets. The FDM’s message
optimization technique requires some functions to

American J. Applied Sci. 2 (5): 926-931, 2005

 928

determine the polling site, which could cause extra
computational cost when each site has numerous local
frequent itemsets.
 All of the parallel approaches optimize message to
reduce communication costs, but none of the parallel
algorithm has considered the problem of partitioned
database with high data schemas. Whenever, the
partitioned database with high data skews increases
computational cost and reduces workload balancing of
processors and hence in such situation a parallel
algorithm works look likes a sequential. Hence without
consideration of problems with data schemas, we can’t
achieve the advantages of parallelization of a mining
algorithm.
 Proposed algorithm, WBDM (Workload Balanced
Distributed Mining) deals with the problem of data
skews and workload balancing by using a stratified
sampling method to partition the database.

Data Skewness and Workload Balance: A partioned
database has high data skewness if most globally large
itemsets are locally large only at a very few partitions.
It is low if most globally large itemsets are locally large
evenly across the processors. When the clustering of
different large itemsets distributed evenly across the
processors; hence each processor would have similar
numbers of locally large itemsets. This case
characterizes as high workload balance. When the
clustering of different large itemsets concentrated on a
few processors; hence some processes would have
much more locally large itemsets than the others. This
is a case of low workload balance. When the clustering
of different large itemsets distributed not evenly across
the processors, then the pruning effects would be
reduced significantly and the work of computing the
large itemsets would be concentrated on a few
processors which is a very troublesome issue of parallel
computation.
 For example Table 1 shows an example of high
data skews and low workload balance. The global
threshold is 15 and the local support threshold at each
processor is 5.

Table 1: High Data Skewness and Low Workload

Balance Case
Items A B C D E F
Local support 13 33 12 34 2 1
at proc-1
Local support 1 3 1 2 1 4
at proc-2
Local support 2 1 2 1 12 33
at proc-3
Global support 16 37 15 37 15 38
Globally large √ √ √ √ × ×
at proc-1
Globally large × × × × × ×
at proc- 2
Globally large × × × × √ √
at proc-3

 In this case, distributed pruning will generate 7
sizes-2 candidates, namely AB, AC, AD, BC, BD, CD
and EF, while the CD will have 15 candidates. Thus
distributed pruning to be very effective, but most
globally large itemsets are locally large only at
processor1, hence have lower high workload balance.
 For example Table2 shows an example of low data
skews and high workload balance. The support counts
of items A, B, C, D, E and F are almost equally
distributed over three processors. Hence the data skews
are low. On the other hand the workload balance is
high, because the number of locally large itemsets in
each processor is almost the same. In this case, both CD
and distributed pruning will generate the same 15
candidate sets; however, global pruning can prune away
the three candidates AC, AE and CE. Hence FPM still
has 20% of improvement over CD in the case of Low
data skews and high workload balance.

Stratified Sampling Based Partitions: With stratified
random sampling, the whole database is divided into a
number of parts or ‘strata’ according to some
characteristic. Simple random samples are then selected
from each stratum. The same proportion will be
selected within each stratum, making the sample a
proportionate stratified random sample. Stratified
sampling can be used as a data partition technique, it
allows a high skewed data set can be partitioned as
homogeneous portions
 Let DB be a database with D transactions. Assume
that there is N processors P1, P2… PN in a distributed
environment. The database divided into N stratum DB1,
DB2…. DBN each with D/N transactions.
 Simple random samples Si, j (j=1..N), each with
D/N2 transactions selected from each stratum DBi
(i=1..N). Thus N partitions DSi, with homogeneous data
of size DI (=D/N) for i=1..N, can be generated as:

DSi =Si,1 ∪ Si,2….∪ Si,N (i=1..N)

Such that:

DS1 ∪ DS2 …….∪ DSN =DB and
DS1 ∩ DS2 ……. ∩ DSN = φ

Maps these N partitions DSi (i=1..N) to processors Pi
(i=1..N) respectively.

Table 2: Low Data Skewness and High Workload

Balance Case
Items A B C D E F
Local support at proc-1 6 12 4 13 5 12
Local support at proc-2 6 12 5 12 4 13
Local support at proc-3 4 13 6 12 6 13
Global support 16 37 15 37 15 38
Globally large at proc-1 √ √ × √ √ √
Globally large at proc- 2 √ √ √ √ × √
Globally large at proc-3 × √ √ √ √ √

American J. Applied Sci. 2 (5): 926-931, 2005

 929

 In this technique the database of size D is divided
into N mutually disjoint parts called strata, each of size
D/N, a stratified sampling partition can be generated by
obtaining a simple random sample of size (D/N) /N
(=D/N2

) from each stratum and N samples of size D/N2

makes a sample of size D/N (= (D/N2
) *N) with

homogeneous data. This helps to ensure a
representative sample, especially when the data are
skewed.

Distributed Approach for Generating Frequent
Itemsets: Let the size of partitions DBi be Di (=D/N)
for i=1..N. Let X. sup and X. spy be the support counts
of an item sets X in DB and DSi, respectively. X.sup is
called global support count and X.supi is called local
support count of X at processor Pi. for a given minimum
support threshold s, X is globally the largest if X.sup ≥
s×D and X is locally large at Pi if X.supi ≥ s×DSi.

Notations:

D Number of transactions in DB
s Support threshold min-sup
L(k) Globally large k-itemsets
C (k) Candidate sets generated from L(k)
X. sup Global support count of X
L i(k) Locally large k-itemsets at Si
X. supi Local support count of X at Si

CG(k) Candidate sets generated from L(k-1)
Ti (j) Data structure to maintain the item set an their
support count at the site Si in jth iteration
Di Number of transactions in DSi

 There is an important relationship between large
itemsets and the partitions in allocating to distributed
system: every globally large itemsets must be locally
large at some partitions DSi. If an itemset X is both
globally large and locally large at a partition DSi, X is
called gl_large at DSi. Notice that at each partition DSi,
if a candidate set X∈CG(k) is not locally large at
partition DSi , there is no need for DSi to find out its
global support count to determine whether it is globally
the largest. This is because in this case, either X is
small (not globally large). Or it will be locally large at
some other partition DSi and hence only the partition
DSi at which X is locally large needed to be responsible
to find the global support count of X. In the proposed
approach since each processor has homogeneous data,
hence generate approximately equal number of locally
large itemsets simultaneously.

Workload Balanced Distributed Algorithm:
//Phase-I : Generation of homogeneous partitions:

Partition the database DB into N partitions DBi (I = 1,
2……. N) each of size D/N
for (i = 1 to N)
{

 for (j = 1 to N)
 {
DSi (j) =random sample from DBj of size D/N2
 }

 DSi = DSi(1) ∪ DSi(2)
∪

…………
∪ DSi(N)

}

//Phase-II: Generation of frequent itemsets:

if k = 1 then
 Tie (1) = get_local_count (DSi , φ, 1)
else
 {
 CG (k) = ∪

N

i
kCGi

1
)(

=

 = ∪
N

i
kGLigenApriory

1
);1((_

=
−

Ti (k) = get_local_count (DSi , CG (k), i);

}
for_all X ∈ Ti(k) do

 if X. supi
≥ s × D/N then

 for j = 1 to N do
 if polling_site (X) = Pi then
 insert <X, X. supi) into LLi,j(k) ;
for j =1, ….. , N do
Send LLi, j (k) to processor Pi;
for j =1, ….. , N do
{
 Receive LLi, j (k) ;
 for_all X ∈ LL i, j (k) do
 {
 if X ∉ LPi(k) then
 Insert X into LPi (k) ;
 update X. large_processors ;
 }
}
 for_all X ∈ LPi(k) do
 send_polling_request (X);
reply_polling_request (Ti (k));
for_all X ∈ LPi(k) do
{
receive X.supj from the processors Pj ,
where Pj ∉ X. large_processors;
X.sup = X.sup1 + X. sup2…… + X. supN;

 if X. sup
≥ s × D then

 insert X into Gi(k) ;
}
broadcast Gi(k) ;
receive Gj(k) from all processors Pj (j ≠ i);

L(k)
 = ∪

N

i
kGi

1
).(

=

Divide L (k)
 into GLi (k), (i=1,…, N);

return L(k)

Explanation of Algorithm:

American J. Applied Sci. 2 (5): 926-931, 2005

 930

* Phase1 create N (N is the no. of processors i.e.
Sites) homogeneous partitions from the large high
skew database.

*. Home Site: Generate Candidate Sets and

Submit Them to Polling Sites: In the first
iteration, the site Si calls get_local_count to scan
the partition DSi once and store the local support
counts of all the 1-itemsets found in the array Ti(1).
At the k-th (for k>1) iteration, Si first computes the
set of candidate set CG(k) and then scan DSi to
build the hash tree Ti(k) containing the local support
counts of all the sets in CG(k) by traversing Ti(k), Si
finds out all locally large k-itemsets and group
them according to their polling sites. Finally, it
sends the candidate sets with their local support
counts to their polling sites.

* Polling Site: Receive Candidate Sets And Send

Polling Requests: As a polling site, the site Si
receives candidate sets from the other sites and
insert them in LPi(k). For each candidate set X ∈
LPi(k), Si stores all its “home “ sites in X.
large_sites, which contains all those sites from
which X is sent to Si for polling. In order to
perform count exchange for X, Si calls
send_polling_request to send X to those sites not in
the list X. large_sites to collect the remaining
support counts.

* Remote Site: Return Support Counts to Polling

Site: When Si receives polling requests from the
other sites, it acts as a remote site. For each
candidate sets Y it receives from a polling site, it
retrieves Y. supi from the hash tree Ti(k) and returns
it to the polling site.

* Polling Site: Receive Support Counts and Find

Large Itemsets: As a polling site, Si receives local
support counts for the candidate sets in LPi(k)..
Following that it computes the global support
counts of all these candidate set and find out the
globally large itemsets among them. These globally
large k-itemsets are stored in the set GI (k) . Finally,
Si broadcasts the set Gi(k) to all the other sites.

* Home Site: Receives Large Itemsets: As a “home

“site, Si receives the sets of globally large k-
itemsets Gi(k) from all the polling sites. By taking
the union of Gi(k) , (i=1,…..N), Si finds out the set Lk
of all the size-k large itemsets. Further Si finds out
from Lk the set GLi(k) of gl-large itemsets for each
site by using the site list in X. large_sites. The set
GLi (k) will be used for candidate set generation in
the next iteration.

Comparison: Now let a sequential approach takes T
time for support count of candidate sets in any iteration.

And let processors, Pi (i=1...N) takes, Ti time to
calculate support counts in allocating partition. Then on
the proposed distributed approach each processor works
on homogeneous partitions (have equal number of
locally large itemsets), hence each processor Pi,
performed their processing at same time T/N for i=1..N.
Now since no any other distributed approach has
considered a homogeneous partition technique of a
database with high skins, hence must be most of
globally large itemsets are locally large only on few
processors. Thus the time required for processing in any
other distributed approaches like Count Distribution
(CD), Fast Distributed Algorithm (FDM) equal to Max
(Ti , i=1..N), which will be greater than T/N.

CONCLUSION

 We considered the problem of mining frequent
itemsets on a shared–nothing multiprocessor
environment on which data has been partitioned, across
the nodes, by using stratified random sampling. An
advantage of sampling for data partition is that the cost
of obtaining a sample is propositional to the size of the
sample, S, rather than the size of the datasets, D. Other
data partition techniques can require at least one
complete pass through D. This algorithm also attempts
to minimize communication by allocating
homogeneous partitions to each processor.
 This algorithm is more efficient to mining frequent
itemsets for those databases, whose size is very large
and have high data skewness. Any parallel algorithm
working on database with high data skews could not
achieve the advantages of parallel processing, because
most globally large itemsets clustered on few
processors. The stratified random sampling used as
partitioning approach balanced work load on each
processor in a distributed environment.

REFERENCES

1. Agrawal, R., T. Imielinski and A. Swami, 1993.

Mining association rules between sets of items in
large databases. In Proc. Of 1993 ACM-SIGMOD
Intl. Conf. On Management of Data, Washington,
D.C., pp: 207-216.

2. Agrawal, R. and R. Srikant, 1994. Fast algorithms
for mining association rules. In Proc. Of the 20th
VLDB Conf., Santiago, Chile, pp: 487-499.

3. Park, J., Chen and P. Yu, 1995. An effective hash-
based algorithm for mining association rules. In
Proc. Of 1995 ACM-SIGMOD Int. Conf. On
Management of Data, pp: 175-186.

4. Savasere, A., E. Omiecinski and S. Navathe, 1995.
An efficient algorithm for mining association rules
in large databases. In Proc. Of the 21st VLDB
Conf., Zurich, Switzerland pp: 432-443.

American J. Applied Sci. 2 (5): 926-931, 2005

 931

5. Toivonen, H., 1996. Sampling large databases for
association rules. In Proc. On the 22nd VLDB
Conference, pp: 134-145.

6. Cheung, D.W. and Y. Xiao, 1998. Effect of data
skews in parallel mining of association rules. In
Proc. Of the 4th Pacific-Asia Conf. On Knowledge
Discovery and Data Mining, New York, USA., pp:
48-60.

7. Zaki, M.J., S. Parthasarathy, M. Ogihara and W.
Li, 1997. New algorithms for fast discovery of
association rules. In Proc. Of the 3rd Int'l
Conference on Knowledge Discovery and Data
Mining AAAI Press.

8. Cheung, D.W., 1996. A fast distributed algorithm
for mining association rules. In Proc. Parallel and
Distributed Information Systems, IEEE CS Press,
pp: 31-42.

9. Brin, S., R. Motwani, J.D. Ullman and S. Tsur,
1997. Dynamic itemset counting and implication
rules for market basket data. In Proc. Of ACM-
SIGMOD Intl. Conf. On Management of Data,
Tucson, Arizona, pp: 255-264.

10. Agrawal, R.C., C. Agarwal and V.V.V. Prasad,
2000. A tree projection algorithm for generation of
frequent itemsets. J. Parallel and Distributed
Computing (Special Issue on High Performance
Data Mining).

