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Non Destructive Tests of Structural Bonds by Guided Ultrasonic Waves:
Effect of a Surface Pretreatment or a Localized Delect
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Abstract: The aim of this study was to propose a non destructive methed to test the mechanical quality
of a bond aluminivm/epoxy/aluminium. Thus, for each aluminivm/epoxy interface, an intermediate
interface modelling between a simple geometrical interface and an interphase (3D material medium},
i.e. a 2D material medium. In order tc describe the surface stresses, we introduce the surface free
energy (the surface tension). This parameter appears in the jump conditions of stresses and
displacements at each aluminium/epoxy interface. So, it influences the ultrasonic waves propagation
and particularly the guided modes of the tri-laver structure. The results show that the surface free
energy does not arise at normal angle of propagation, whereas near the Rayleigh angle, the behaviour
of the A, and S; Lamb modes varies strongly according to its value. Such a medelling seems well
adapted to take into account the pre-treatments of the aluminium plates or some localized interface

defects.
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INTRODUCTION

The use of adhesives is of great interest in industry
because they allow to assemble different metal parts
without having fo bring them up at wvery high
temperatures. Joining does not have the disadvantages
of the welding, which medifies the mechanical
characteristics of the materials, nor those of the
riveting, which requires to bore the two parts before
joining them together.

It is well-known that, in order to obtain a better
adhesion, metallic plates must be treated before joining.
The principal surface treatments are: mechanical
treatments {sanding, abrasion, ultrasounds}, chemical
treatments {cleaning with solvent, alkaline cleaning,
primer}, physico-chemical treatments (plasma, the
exposure to the ultraviolet rays).

There has been extensive research on the theoretical
and experimental characterization of adhesively bonded
structures [1-8], but there is nc information about
taking into account the pretreatments upon the guided
waves. Hence, the interface conditions usually used are
the perfect contact conditions, the slip conditions and
the rheological conditions with or without inertia
[9-16]. In the appendix we recall, for each one of them,
their writing in term of stresses and displacements.
From the literature [17-19], it seems that the
prefreatments increase the surface free energy of the
metallic plates. Then, the aim of this study was to
introduce this parameter inte the modelling. So, each
aluminium/epexy interface is described by an
intermediate interface modelling between a simple
geometrical interface and an interphase (3D material
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medium), i.e. a 2D material medium. In 1949,
Shuttleworth proposed an extension of the surface
tension of seolids which depends on the surface free
energy and the surface deformation. In 1985, Felder
developed a thermodynamic theory which describes the
surface interactions between two solids media. This
allows to cbtain the jump conditions of stresses and
displacements at each aluminium/epexy interface.
These conditions, the so-called Felder's jump
conditions, depend on the surface free energy.
Consequently, the ultrasenic waves propagation and
particularly the guided modes of the tri-layer structure
are influenced. The results show that the surface free
energy does not arise at normal angle of propagation,
whereas near the Rayleigh angle, the behaviour of the
Ay and Sq Lamb medes varies strongly according to its
value. The reversal which appears is compared to the
asymptotic behaviour of the Rayleigh wave at the
aluminium/vacuum interface and for the Felder's jump
conditions. By extension, all that involves a stress
concentration near the bonded interfaces {micro-
defects, cracks) must be able to be taken into account
by this type of modelling.

FUNDAMENTAL CONCEPTS

In this study, we will use the surface properties of the
sclids in contact and, for this reason, we will make
some recalls.

Laplace's Law (1806): Mechanical Equilibrium of a
Liquid Surface: Let us consider a point P, belonging to
any liquid surface S represented in Fig. 1. Twe
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orthogonal planes containing the normal line te the
surface at point P define two arcs AB and CD, whose
the principal radii of curvature are R; and R,
respectively.

Fig. 1: Mechanical Equilibrium of an Arbitrary

Curved Surface

The difference of pressure across the surface defined by

AP=P

P —FB is written;

1 1
AP =7, [ R R J (1)
where, P2 and I are the interior and the external

pressure and 7y, is the surface tension.

Young's Formula (1805): Mechanical Equilibrium
of a Liquid Drop on a Solid Surface: A liquid drop,
placed on the surface of a solid, can exhibit two
different behavicurs: (i) the drop may spread out
completely over the selid or (i} the drop conserves its
form in an equilibrium cenfiguration. In the second
case, the tangent to the liquid surface forms with the
plane of the solid an angle 9, different from zere and
called the “contact angle” {Fig. 2}.

71 ]
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‘Is g liquid T.s;l
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Fig. 2: A Liquid Drop on a Solid Surface

The relation between the contact angle and the
intermolecular forces is written:
Ys - Y = Y1 cos@ {(2)
where, ., 7, and vy are the surface tensions for solid/air,
liquid/air and solid/liquid interfaces respectively.

We remark that for a given liquid, we can increase the

criterion of absorption by increasing the surface tension
of the solid (pre-treatments}.
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Shuttleworth's Formula (1949): Laplace's Law
Extension to an Isotropic Solid Surface: Many
authors show that for a liquid, the surface tensicn and
the surface free energy are numerically equal. On the
contrary, in solids, a distinction is made between the
surface free energy F and the surface tension 7. A
thermodynamic relation between F and y can be
derived. So, let consider a square surface L of area A

(Fig. 3).

3

‘[ > . A+A
A >1 dA—dA +dA,
>y
|

Fig. 3: Deformation and Components of the Surface

Stress Tensor of a Square Surface ¥ of Area A

The work needed for varying ifs area, in a isothermal
and reversible process, is d(FA)=YdA and then,

y=F+AdL.

dA" 3

Like in a liquid medium, the atoms located at the
surface of a solid are in a steady state because bonds are
established between them. To describe these bonds, we

introduce a symmetrical surface stress tensor OF. In

the direct orthonormal base (€1, €2), itis defined by:

m:[ j

where, 7 is the shear component and 7y, v are the
normal compenents.
Then, the surface free energy variation is also equal to:

HAF)=fah +yds, = p=p Tn S

3

4
74 @

{35

Since d{AF) does not depend upen the orientation of

the square, dA =dA=dA/2 andthen y=(y, +y,)/2,
i.e.  half the sum of the twe principal
stresses, which 1s a mathematical invariant.
The relation {3 shows that  the surface
tension » is  equal to the surface free
energy plus a term depending on the  relative
deformation dA/A [20]. For a liquid, the
surface free energy 1is not afunction of the

deformation and y=F .

Felder's Theory (1985): Thermodynamics of Surface
Interactions between Two Isotropic Solid Media: Let
consider two solids noted 1 and 2. The material
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demains €}, and €, are in contact with each other

through the zone Q.=C,\ X, C, (Fig. 4). The zones C;
and C, are composed of solid 1 and 2, respectively and

¥ is the geometrical interface between the two media.

9= CUIUC,

Fig. 4: Two Material Domains and their Contact Zone

We assume that (i) there is no flow of mass between
and C, through X and (i} the thickness of C; and C,,

hjand h;, tend towards zero. Consequently, Q. can be
replaced by a material interface X, 1i.e. a 2D continuum
medium. Then, on X, any mechanical parameter df is

defined by:
T : : T,
F=24&h =3¢, {6)
i=1 i=1

where, & is the value of & on d€;ME..

Following the way used to build the constitutive
equations of continuous media, Felder apply the two
principles of thermoedynamics te this inferface. The
applicaticn of the first principle establishes the local
mechanical equations of the interface and defines a
generalized surface stress tensor. The application of the
second principle, for a reversible thermodynamic
process, gives the behaviour law of the interface X .
During the calculations, Felder makes three
assumptions: (a} the external surface efforts are null, (b}
the mass of the interface could be neglected and

consequently the surface free energy F= , i=1,2 only

depends on the deformation, {b} the strain of the
interface are elastic and sufficiently small to assume

that di./dx=0 (but 0%, /0x20 ). The mathematical

details of these calculations are presented in Felder

[21].
1
., m
2 w

Fig. 5: The Problem Geometry

The conservation of the momentum at the interface Y,
gives the stress and displacement jump conditions at the
z=0 interface:

; . oF®  orF™
g, —C, =" - )
5 . 5 alug 5, alug
o.—0, =2F —xz +2F YR

where, ! =t =1, and ul=u?.
If we take info account the assumptions {b) and {(c), the

free energy of the interface F* is defined by:
2
F2=ZF>:E( §25)
i=1 n
where g}:{ is the 2D linearized strain tensor. Using the

equation (6}, the components of this tensor may be
written:

(e, = e, o0,

Then, the interface conditions (7} are given by:

11 dF™ a§21 oF™ afzg
g.—0_ =— = — =,
* “ agzi dx agzz ox

ol —g! =2F* 82141 ®)
k4 = axl *
uf = ui =u,
ul —ul =0,
T, T, i
where, oF =BF 82‘2 ,i=1, 2.
dx g5 Ox
aF>

In the applications, the term which corresponds

I,
ag™

to the term A£ of the Shuttleworth's equation is
dA

always smaller than F % 5o, it can be neglected. Then,

the equations {8} are simplified:

o ©)

So, the shear stresses and the displacement vector at the
interface are continue, whereas the jump of the normal
stresses depend on the free energy of the interface. This
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equaticn is the generalization of Laplace law (1), azi
o

correspending to the curvature radium of the interface.
EFFECT OF THE SURFACE FREE ENERGY
ON THE GUIDED MODES OF THE
ALUMINIUM JOINT

We consider a symmetric tri-layer structure composed
of two isotropic and homogeneous aluminium plates

(8, and S8;) joined by an adhesive (S,). For the
metallic plates, we denote the thickness 2/, the
density 0, the longitudinal waves velocity ¢;; and
the transversal waves velocity ¢p . The density of the
adhesive layer is 0, its thickness is d and the
correspending  lengitudinal and  transversal waves
Cry ¢r, (Fig. 6). Each
aluminium/adhesive interface ( z=%d/2) is described
by Felder's theory.

velocities are and

Vacuum

2h ALUMINIUM 5
d  ADHESIVE O mmmmmommnnnes KRR »x
2h ALUMINIUM 3,
Vacuum
vz
Fig. 6: Geometry of the Tri-layer
In plane deformations, the scalar and vectorial

potentials are defined by:
4 =[A; cos (ki (z+d 2 B sinfle (e+d 2))|e ) 1y
¥4 =| Az 008 (e, (z+d /201 By sin (g (z4dl/2)) |

for the §; -laver,

2 =F9L CO§ (klzz Z)+ B, sin (kLZZZ) giFx—an an

{"V2= AZT COs (sz2Z)+BZT Sln (sz2Z) ei(kxjﬁax)
for the §, -laver, and

¢5 = [‘451- cos (kl»zl(zid'[z)}‘f’BgL sin (kLgl(Zfdllz))] ei-(kxx_ﬁx) (12)
W= [Az»r cos (km(zfd / 2)}+BST sin (szl (z-d /2)}] itk

for the §; -laver.
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We introduce the notations: Ky, K, i=1,2 which are
the

longitudinal and transversal waves in the layers, kx the
commen X -component of the wave vectors and @ the
angular frequency.

The dispersicn equation of the guided modes into the
structure is classically found by writing the boundary
conditions:

z -compenents of the wave vectors for the

*

the free surface conditions at the interfaces

=+(2h+d/2),
the conditions established previously (eq. 9} at the
interfaces z=td /2.

*

This leads to a 12x12 system; the roots of its
determinant give the guided modes of the tri-layer. In
fact, we remark that the 12x12 matrix can be written as
A+FB, where A and B are two 12x12 matrix which do
not depend on F. Then, the determinant of A+FB can

be written as a 3 degree pelynomial in F:
detA+FB=Dy,+FD +F? D+ F3 D, (133
where, p, = det (4), D, = det 8), D, and D, are function
of A and B. If F'=0, we obtain the case of the tri-layer
with perfect contact conditions [22]. Each term

D,.i=01,2,3 depends cn the variables @ and kx, which

are  replaced by the dimensicnless quantities

=2k h, k=l . the
parameter F=pFj2hy) Wwhich compares the surface

Moreover, we infroduce

stresses and the shear bulk effects. This dimensionless
parameter is smaller than the unity and the terms of the
developpement {13} decrease.

In the Fg 7-9, we present the dispersicn curves
obtained for an aluminium /epoxy /aluminium tri-layer

with ¢, =6380m/s, c,=3100mis. p=2800kg/m?,
€ =2662mls. ecn=1356mis, p,=1160kg/m*, g/2n=10
and for different values of F . The curves plotted in
triangles correspond to F_g {perfectly bended tri-
layer), whereas

correspond to F#0.

[t is observed (Fig. 7-9) that the modes are sensitive to
the variations of the surface free energy only for

the curves plotted in circles

oblique angles of propagation { k,=k./k =0}

— 2
For k,=0, the term %
ox?
effect of curvature can be observed for normal
propagation. Then, the cutoff-frequencies of guided
modes are the same as for F—q.

is equal to zerc because no
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Fig. 9: Dispersion Curves Comparison { f—1{-)

For 7,0, the effect of the surface free energy is more

significant when F increases.

The Ay and S, Lamb medes are particularly sensitive.
On Fig. 8, we observe that the asymptetic Rayleigh

wave limit (for an interface aluminivm/acuum and free
surface conditions) dees not appear for F=0. These
modes undergo a “reversal”, the corresponding
frequencies at the “reversal” point vary according to F .
In order to explain this behaviour, we studied the
Rayleigh wave which appears at the aluminium/vacuum
interface with Felder's jump conditiens. In this case, the
Rayleigh equaticn is given by Biryukov [23]:

_a — 1 _
AT Tk g +Hnh —2% ) 120 FEnt k7 — nd =0, (1)

where,
—2 - = -2
kig=ni—ky, ke =mp—ky np=celey, ip=colep . and

€. is the wave velocity in water.

This equation is the sum of the Rayleigh equation for an
aluminium/vacuum interface with 7—; and a term

propottional to F and . Thus, when we take into
account the surface free energy, the Rayleigh equation
becomes a dispersive equation. This is explained by the
introduction of a characteristic length of reference (one

of the thicknesses /s introduced in Felder's theory
§2.4), The numerical sclutions of the equation (14} for

different values of F are given on Fig. 10. We observe
that the Rayleigh wave undergoes a “reversal” like the

A, and §; modes.

If we report the curves (a), (b), (c) on the Fig. 7, 8 and
9, respectively, we observe a good agreement between

the asymptotic behaviour of the A, and S, modes and

the Rayleigh wave (for the aluminivm/vacuum interface
with Felder's jump conditions).
The results presented above show that it is theoretically

possible to evaluate the surface tension F - let us recall
however that its value is representative of the bond
guality — but what does happen applications ?

Considering an aluminium/epoxy/aluminium tri-layer
where the thicknesses of the two materials are
Zh=3mm and 4=300um, Le. Jg/2h=101. After a

standard pre-treatment, the average value ofthe
thickness of the resulting zone is on the order of
25um, which corresponds to  pF-7.1GN/m, L&

F =10 . So, the dispersion curves of guided modes
correspond to the Figure 7. The influence of the surface
tension on the asymptotic limit of the A, and S

w=23. ie the

wavelengths in the structure vary between 60 pm and
200 um for an average frequency about 2 MHz. The
value of the wavelengths agrees with the modelling
{both aluminium and epoxy layers are 3D media and
the pretreated zone is a 2D mediumy.

medes becomes sensitive near
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Fig. 10: Rayleich Wave for an Aluminium/vacuum
Interface with Felder's Jump Ccenditions for

Different Values of F

CONCLUSION

In this paper we studied, by the mean of uvltrasonic
waves, an aluminium/adhesive/aluminium structure; the
adhesion zone being described by a 2D material
interface. This yields to intreduce the “surface free
energy” parameter. This parameter appears in the jump
conditions of the problem, the so-called Felder's jump
conditions. Its influence on the acoustic guided medes
of the aluminium joint is studied.

The dispersion equation is the sum of two terms: the
first corresponds tc the dispersion equation for the
conditions of perfect adhesion, the second is
proportional to the free energy of interface and vanishes
at normal incidence. The numerical study of the
dispersion curves allows to evaluate the influence of the
surface free energy compared to the case of reference
{aluminium/adhesive/aluminium with contact perfect
cenditions), The A and S, Lamb modes undergo a
“reversal” which can be explained by the high-
frequency behaviour of the Rayleigh wave (at the
aluminivm/vacuum interface with Felder’'s jump
conditions).

The Felder's jump conditions may be used to model a
stress concentration near the bonded interfaces. Such a
stress concentration can occur when the aluminium
plates are pre-freated or when some defects, as cracks,
are localized at the interfaces.

Appendix: Conditions of interface usually used in the
literature.

1. Perfect contact conditions:

ﬂux ]=O,Huz ‘]=0,
ﬂcrxz H=O,Ho1m H=0
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2. Slip conditicns:
Ko

ch=0t.=0, HJ"Z ‘]=0

Hx

3. Rheological conditions without inertia:

O'_%zZ()'%ZZKT qu l

ot=ct=K |u|]

4, Rheological conditions with inertia:
o+ 0t =2K, )] o2 + ot =2K, u,

],

d? d?
]= %W(u}ﬁu%), H O ‘]= %W(ué+u%)

u Oy
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