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Abstract: The deviation control is to restrict the drilling direction of the bit from time to time. The 
drilling direction is of course depending on the direction of the resultant forces acting on the bit. What 
is the relationship between these directions? Are there any other influential factors? Answers to such 
questions, different points of view were subjected to analysis.  
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INTRODUCTION 

 
In the rectangular coordinate system shown in Fig. l, 
the side forces RP and RQ are acting along X-axis and 
Y-axis respectively. The resultant force R is combined 
by three mutually perpendicular components; they are 
RP, RQ and the weight on bit PB.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. l: 3D Relationship between Forces and 

Displacements 
 

ZS  is the axial penetration due to PB in time interval 
�t. 

PS  is the side cutting in Y-axis due to RP in  �t. 
QS  

is the side cutting in Z-axis due to RQ in �t. It is clear 
that the drilling direction would not be the same as that 
of the resultant force and the magnitudes of 
planned/actual path depends on many influential 
factors, such as rock properties, formation 
characteristics, types of bit, etc.  
Hole Deviation Mathematical Definition: The 
wellbore trajectory is defined as a series of surveyed 
points in 3D space. These points along the planned path 
are called the Measured Depth (MD*), associated with 
MD*  is    north (N*),  east (E*),  Total   Vertical   Depth  

(TVD*), Inclination (I*) and azimuth (A*), respectively, 
planned values North, East, True Vertical Depth, 
Inclination and Azimuth. These points are jointed 
together to form a continuous trajectory with a 
geometric calculations method. Eight components 
collectively define hole deviation control; they are 
based on lineal and angular differences between the 
actual and planned well paths.  
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The superscript (n) in the definitions of each relative 
change is refer to the respective values during the prior 
computing of hole deviation; (n-1) refers to values at 
planned hole drilled between the two foregoing hole 
deviation computations. The superscript (*) defines the 
measured data and the subscript (b) refers to current 

well bore total depth. Thus �L is ( ) )(* n
MD  which is 

preferably somewhat short. Performing two successive 
coordinate axis rotations derive the equations for (V) 
and (H) the first rotation is by the deviation angle �* 
about the TVD axis. The aforementioned vector is 
orthogonal to the planned path at MD*, then the 
required �TVD” equals zero; i.e. Respective to hole 
deviation, a preferable method by which to 
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mathematically represent the entire planned drill path is 
to parametrically define each Cartesian coordinate and 
hole inclination and azimuth, in terms of measured 
depth. That is the planned path is designed and then 
represented as follows: 
 
NMD = P1(MD);    EMD = P2(MD);      TVDMD = P3(MD);    �MD 
= P4(MD);     �MD = P5(MD)  
 
The rate of change in lineal relationship between the 
planned and actual well paths is assumed to remain the 
same over small distances; this assumption is often 
completely valid. As the hole is drilled, it is necessary 
to determine where on the plan one would prefer the 
wellbore to exist. The linear distance between the 
current bottom hole location and a point on the planned 
path is computed with the 3D distance formulas. This is 
generally represented by Eq.1 
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Let MD* represent the measured depth along the 
planned path, whose respective Cartesian coordinates 
minimize the distance computed with Eq.1. Therefore, 
MD* found by taking the derivative of Eq.1 with 
respect to MD and setting the result equal zero.  
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The measured   depth that sets the right hand side of Eq. 
2 equal zero is MD*; therefore, the denominator may be 
ignored and MD* is found by solving Eq. 2. 
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Well Bore Position Uncertainty: In 3D, the 
confidence region is most often depicted as ellipsoid 
because ellipsoids are the constant value contours of the 
3D Guassian2 probability density function. The 
technique used is based on the generalized linear 

regression model: εβ ��� += Xy ; where: y
�

 is an (m) 

by one vector of observations. β
�

 is a (p) by one vector 
of model parameters. X is an (m) by (p) matrix of 
regression variables, which establishes a linear 
relationship between the observations and the model 
parameters. ε�  is an (m) by one vector of random errors 
that characterizes the uncertainty observation. (m) is the 
number of columns in the vector y

�
. (n) is the north 

component of a position vector. (p) is the probability 
density. Assuming ε�  is zero mean and has a Gaussion 

probability distribution, the probability density function 

for the random variable β
��

Xy −  is: 
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where: ε�C  is the covariance matrix for the random 

vector ε� . Maximization of Eq.4 with respect to β
�

 

yields the following estimate β̂
�

 and its covariance β
�C . 
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XT is the transpose of X. Assume we have (k) 
measurement can be written in the following form: 
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 A sequence of these position measurements can be 

written in the following form: 
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which each Ij is a (3*3) identity matrix and 1� j � k.  
The covariance matrix, ε�C , can be written as: 
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where, (d) is the vertical component of a position 
vector. (e) is the east component of a position vector. (i) 
is an integer between 1 and k that designate the ith 
member of a set of (k) measurement. (j) is an integer 
between 1 and k that designate the ith member of a set 
of k measurements. (k) is the number of position 
measurements included in the ith estimate. (t) is a tag 
used to designate the true bottom hole location. ir

�
 is 

the ith measurement of position vector. tr
�

 is the true 

position vector. ijrδ �
 is the uncertainty in the ith 
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measured position vector. Each term of the form 
T

ij ijr rδ δ� �
 is a (3*3) covariance matrix defines a 3D 

Guassion distribution with a probability density 
function in the following form: 
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and because the covariance matrices, Cii, are diagonal, 
the probability density function reduces to: 
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where, (x) is the element of the position covariance of 
matrix in the x-coordinates. (y) is the element of the 
position covariance of matrix in the y-coordinates. (z) is 
the element of the position covariance of matrix in the 
z-coordinates. The constant value contours of Eq.5 are 
family of ellipsoids defined by the equation of the 
quadratic expression in the exponent to a constant. For 
each ellipsoid, the length of the north, east and down 
semi-major axes are: 

xiiCs.  
yiiCs.  

ziiCs.  

where, (s) is the normalized length of the semi major 
principal axes of the confidence region ellipsoid.  
The mathematical basis of the HDC technique can be 
summarized by restating the basic formula in the 
following format: 
 

yCIICIHDC n
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The covariance matrix of the HDC is given as:         
 

11 )( −−= n
T
nHDC ICIC ε�  (7) 

 
Error Accuracy Prediction: The central limit 
theorem1 ensures that the statistical distribution of each 

tr̂
�δ  will be approximately Guassion and independent of 

the distribution of the individual error budget, Fig. 2 
and 3. The following assumptions are implicit in the 
error models and mathematics presented: 
 
* Errors in calculated well position are caused 

exclusively by the presence of measurement errors 
of well bore survey station. 

* Wellbore survey station are three element 
measurement vectors, the elements being a long-
hole depth (D), inclination (I) and azimuth (A). The 
propagation mathematics also requires a tool angle 
(�) at each station. 

* Errors from different error sources are statistically 
independent. 

* There is a linear relationship between the size of 
each measurement error and the corresponding 
change in calculated well position. 

* The combined effect on calculated well position of 
any number of survey stations is equal to the vector 
sum of their individual effects. 

* No restrictive assumptions are made about the 
statistical distribution of measurement errors.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Vector Error at Point of Interest 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3: The Final Section of the Well Showing 

Planned/Actual Wellbore Position and the 
Tool Face Angle Error 

 
or the best estimate of position uncertainty it is temping 
to differentiate minutely among tools type and models, 
summing configurations, bottom hole assembly (BHA) 
design, geographical location and several other 
variables. While justifiable on technical ground, such 
an approach is impractical for the daily work of the well 
planner.   
 
The Error Propagation Mathematical Model: The 
method of position uncertainty calculation admits a 
number of variations, in that selection of the same set of 
conventions which always yield the same results. Recall 
and   evaluate   the   vector   error due to the presence of  
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error source (i) at the station k, which is the sum of the 
effect of the error on the preceding and following 
survey displacement yield:  
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the two differentials in the parentheses in Eq.8 may 
then be expressed as: 
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for the purpose of computation the error summation 
terminated at the survey station of interest the vector 
errors at this station are therefore given by: 
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where, (e*) is the 1s.d vector error of the station of 
interest. 
Writing kr∆  for the displacement between survey 
station (k-1) and (k), it may express the 1s.d error due 
to the presence of the ith error at the kth survey station 
in the lth survey leg as the sum of the effect on 
preceding and following calculated displacement. 
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where: (e) is the 1s.d vector error at an intermediate 
station. σ  is the standard deviation of error vector. (r) 
is the wellbore position vector. (p) is the survey 
measurement vector (D, I, A). ε  is the particular value 

of a survey error. ikp ε∂∂ /  describes how is the 
changes in the measurement vector affect the calculated 
well position.  
 
Weighting Functions for Sensor Errors: The 
weighting functions for constant and BH-dependent 
magnetic declination errors are: 
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for BHA sag and direction-dependent axial magnetic 
interference they are: 
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and for reference, scale and stretch type depth error 
they are: 
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where: (B) is the magnetic declination, nT. Θ  is the 
magnetic dip angle, deg. 
 
Tool axis and tool angle are defined in Fig. 2. There are 
12 sensor error sources and each requires its own 
weight function. These are obtained by differentiating 
the standard navigation equations for inclination and 
azimuth: 
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and making use of the inverse relations: 
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Effect of Axial Interference Correction: Detailed of 
the interference corrections differ from method to 
method, but it is reasonable to characterize them all. 
From   Eq. 15   and   ignoring   Bz  measurement;   then 
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( ) ( ) MINIMUMBBBB =Θ−Θ+Θ−Θ
22 ˆsinˆsinˆcosˆcos  

where B̂  and Θ̂  are the estimated values of total field 
strength and dip angle respectively. Solving these three 
equations for azimuth leads to: 
 

0cossincossin =++ mmmm AARAQAP   (16)                          
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)sincos( αα yx BBQ −−= ; IBR 2sinˆcosˆ Θ= . The sensitive 

of computed azimuth to error in the sensor 
measurement are found by differentiating Eq.16 with 

respect to B̂  and Θ̂ . The misalignment error modeled 
by William3 as two uncorrelated errors corresponding 
to the X-axis and Y-axis of the associated inclination 
and azimuth error lead directly to the following 
weighting function: 
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Summation of Errors: The contribution to survey 
station uncertainty from randomly propagation error 
source (i) over survey leg (l) (not containing the station 
of interest is: 
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The contribution to survey station uncertainty from a 
systematic propagation error (i) over survey leg (l) is: 
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Each of these error types is systematic among all 
stations in a well. The individual errors therefore are 
summed to give a total vector error from slot to station: 
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the total contribution to the uncertainty at survey station 

K is: T
kiki

well
ki EEC ,,, •=       

where: (E) is the sum of vector errors from slot to 
station of interest. 

The total position covariance at survey station (K) is the 
sum of the contributions from all the types of error 
source: 
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where the superscript (sur) indicates the uncertainty is 
defined at a survey station. 
Error vectors due to bias error are given by: 
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where, (m) is the bias vector error at an intermediate 
station. (m*) is the bias vector error at the station of 
interest. 
The total survey position bias at survey station (K, 

sur
KM ) is the sum of individual bias vectors taken over 

all error source (i), legs (l) and station (k):  
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Defining the superscript (dep) to indicate uncertainty at 
an assigned depth, it may be shown that: 
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where, (Wi,L,K) is the factor relating error magnitude to 
depth measurement uncertainty. ( kv ) is the along-hole 
unit vector at station K. Fig. 4 illustrates these results. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Vector Errors at the Last Station 
 
Survey bias at an assigned depth is calculated by:  
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When calculating the uncertainty in the relative position 
between two surveys stations (KA, KB), the uncertainty 
is given by: 
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the relative survey bias is simply: 

[ ] sur
K

sur
KKK

sur
BABA

MMrrM −=−                                  

 
The uncertainty in this position error is expressed in the 
form of a covariance matrix: 
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The results derived above are in an Earth-Referenced 
frame   (north,   east,    vertical,    subscript   (nev)). The  
 

transformation of the covariance matrices and bias 
vector into the more intuitive borehole referenced frame 
(high side, lateral hole, subscript (hla)) is 
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[T] is a rotation matrix. The uncertainties and 
correlations in the principal borehole directions are 
obtained from: 
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RESULTS AND CONCLUSION 

 
The error models for basic interference-correction 
MWD have been applied to the standard well profiles to 
generate position uncertainties in each well. The results 
of several combinations are tabulated in Table 1 and 2. 

Table 1: Standard Well Profile 
Well 1: lat. = 60°N, log. = 2°E, G = 9.80665 m s-2, B = 50000nT, Θ  = 72°, � = 4°W, station interval = 30 m, 
vertical section azimuth =75° 
MD (m) Inc (deg) Azi (deg) North (m) East (m) TVD (m) VS (m) DLS °/30m 
0 0 0 0 0 0 0 0 
1200 0 0 0 0 1200 0 0 
2100 60 75 111.22 415.08 1944.29 429.79 2 
5100 60 75 783.65 2924.62 3444.29 3027.79 0 
5400 90 75 857.8 3201.34 3521.06 3314.27 3 
5850 90 75 1530.73 5712.75 3521.06 5914.27 0 
Well 2: lat. = 28°N, log. = 90°E, G = 9.80665 m s-2, B = 48000nT, Θ  = 58°, � = 2°E, station interval = 100 m, 
vertical section azimuth =21° 
0 0 0 0 0 0 0 0 
609.6 0 0 0 0 609.6 0 0 
1079.28 32 2 435.4 15.19 1072.32 411 2 
1524 32 2 1176.48 41.08 1434.2 1113.06 0 
1684.185 32 32 1435.37 20.23 1570.91 1383.12 3 
1844.37 32 62 1619.99 318.22 1707.615 1626.43 3 
2004.554 32 92 1680.89 582 2013.232 1777.82 3 
2164.74 32 122 1601.74 840.88 2062.057 1796.7 3 
2862.0263 62 220 364.88 700 2519.254 591.63 3 
3810 62 220 -1692.7 -1026.15 2991.923 -1948.01 0 
Well 3: lat. = 40°S, log. = 147°E, G = 9.80665 m s-2, B = 61000nT, Θ  = -70°, � = 13°E, station interval = 30 m, 
vertical section azimuth =310° 
0 0 0 0 0 0 0 0 
500 0 0 0 0 500 0 0 
1100 50 0 245.6 0 1026.69 198.7 2.5 
1700 50 0 705.23 0 1412.37 570.54 0 
2450 0 0 1012.23 0 2070.73 818.91 2 
2850 0 0 1012.23 0 2470.73 818.91 0 
3030 90 283 1038.01 -111.65 2585.32 905.39 15 
3430 90 283 1127.99 -501.4 2585.32 1207.28 0 
3730 110 193 996.08 -727.87 2520 1197.85 9 
4030 110 193 721.4 -791.28 2417.4 1069.86 0 
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Table 2: Calculated position uncertainties (1s.d) Uncertainties A Long-Borehole Axes 
           Well No.          Depth interval (m) Model Option      �H (m)     �L(m) �A (m) 
1 1 0 to 2500 Basic S, sym 20.116 84.342 8.626 
2 1 0 to 2500 Ax-int S, sym 20.116 196.390 8.626 
3 2 0 to 3800 Basic S, sym 16.185 29.551 10.057 
4 2 0 to 3800 Basic D, sym 16.185 29.551 9.080 
5 2 0 to 3800 Basic S, bias 15.710 27.288 8.526 
6 2 0 to 3800 Basic D, bias 15.710 27.288 8.419 
7 3 (1) 0 to 1380 Basic S, sym 2.013 3.703 0.919 
  (2) 1410 to 3000 Ax-ani S, sym 3.239 3.646 7.890 
  (3) 3030 to 4030 basic S, sym 5.604 9.594 9.594 
Correlation Between Borehole Axes 
           Well No.         Depth interval (m) Model Option        HLρ  HAρ   

LAρ  
1 1 0 to 2500 Basic S, sym -0.016 +0.676 -0.004 
2 1 0 to 2500 Ax-int S, sym -0.005 +0.676 -0.005 
3 2 0 to 3800 Basic S, sym +0.030 -0.613 +0.049 
4 2 0 to 3800 Basic D, sym +0.030 -0.429 +0.073 
5 2 0 to 3500 Basic S, bias +0.050 -0.607 +0.145 
6 2 0 to 3800 Basic D, bias +0.050 -0.574 +0.148 
7 3 (1) 0 to 1380 Basic S, sym -0.007 0.633 -.006 
  (2) 1410 to 3000 Ax-ani S, sym -0.172 0.633 -0.665 
  (3) 3030 to 4030 basic S, sym -0.180 -0.590 +0.302 
Survey Bias A Long- Borehole Axis 
           Well No.       Depth interval (m) Model option Hb  (m) 

Lb (m) 
Ab  (m) 

1 1 0 to 2500 Basic S, sym    
2 1 0 to 2500 Ax-int S, sym    
3 2 0 to 3800 Basic S, sym    
4 2 0 to 3800 Basic D, sym    
5 2 0 to 3800 Basic S, bias -6.788 -12.4117 +11.698 
6 2 0 to 3800 Basic D, bias -6.788 -12.411 -4.758 
7 3 (1) 0 to 1380 Basic S, sym  Results at 1380 
  (2) 1410 to 3000 Ax-int S, sym  Results at 1380 
  (3) 3030 to 4030 basic S, sym  Results at 1380 
Key to error model basic  Basic MWD 
 Ax-int Basic MWD with Axial interference correction 
Key to calculation options S, sym Uncertainty at survey station, all errors symmetric (i.e., no 

bias). 
 S, bias Uncertainty at survey station, selected errors symmetric 

modeled as bias. 
 D, sym Uncertainty at assigned depth, all errors symmetric (i.e., no bias) 
 D, bias Uncertainty at assigned depth, selected errors symmetric 

modeled as bias. 
Uncertainties at the tie line (MD=0) is zero; stations interpolated at whole multiples of station interval using 
minimum curvature and minimum distance methods; well plan way points included as additional stations; 
instrument tool face = borehole tool face 
 
Example 1 and 2 (Table 2) compare the basic and 
interference in well Unity#30. Being a high inclination 
well running an approximately, the interference 
correction actually degrades the accuracy. The results 
are plotted in Fig. 5. Example 3 to 6 all represent the 
basic MWD error model applied to well RenMen#95.  
 
 

They   differ   in    that each uses a different 
permutation   of    the   survey station/assigned depth 
and    symmetric   error/survey   bias calculation 
options. The variation of lateral uncertainty and 
ellipsoid   semi-major   axis,    characteristics    is 
shown in Fig. 6. 
 
 
 



American J. Applied Sci., 2 (3): 711-718, 2005 

 718

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Comparison of Basic and Interference 

Corrected MWD Error Models Well Unity#30 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Variation of lateral uncertainty and ellipsoid 

semi-major axis well RenMen#95 
 
Example 7 breaks well Quan#95 into three depths 
intervals, with the basic and interference-correction 
models being applied alternately. This example is 
included as a test of error propagation (Fig. 7 and 8). 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7: Vertical Section of Well Profiles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8: Plan View of Well Profile 
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