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Abstract: This study deals with the presence of long range dependence at the long run and the cyclical
frequencies in the specification of the US unemployment rate. We use a parametric procedure that
permits us to test unit and fractional roots in raw time series. The results show that both the long run
and the cyclical structures present a component of long memory behaviour. Additionally, the root at
zero seems to be more important than the cyclical one, implying that shocks affecting the long run are
more persistent than those affecting the cyclical part. The results are consistent with the empirical fact
observed in many macroeconomic series that the long-term evolution is nonstationary, while the

cyclical component is stationary and persistent.
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INTRODUCTION

Modelling macroeconomic time series is an area of
research that has been widely investigated during the
last twenty years. All the questions consist of finding
the best approach to separate the business cycle, from
seasonal and long run fluctuations. It should lead to an
optimal decomposition of the raw series x, into a
seasonal movement (s,), representing the persistent
fluctuation of the series over the seasons, a trend
movement (t), dealing with the long-run evolution of
X;, the business cycle movement (c;) and an erratic
component (u). Leaving out the seasonal part, the
decomposition of economic series into a trend and a
cycle remains an issue of considerable practical
importance. Two methods have been widely employed.
On the one hand, the unobserved component (UC)
approach, introduced by Harvey [1] and Clark [2] and
refined later by Harvey and Jaeger [3], implies a very
smooth trend with a cycle that is large in amplitude and
highly persistent. On the other hand, the approach of
Beveridge and Nelson [4] implies that much of the
variation of the series is attributable to variation in the
trend, while the cycle is small and noisy. This conflict
is theoretically solved by Morley et al. [5]. These
authors show that since the two approaches are model-
based, each leads to an ARIMA representation.
Anyway, the economic theory in whatever format it
comes has build-in the idea that cycles are stationary (if
not in a wide sense, at least in a weak sense). That is,
although there may be spillover of cyclical movements
into the medium-long run, these are very small and
nonstationary behaviour, if it exists, is due to the trend
of the series The existing literature has usually
concentrated on the long run behaviour of the series and
unit roots have become a standard approach when

modelling its behaviour. With respect to the cyclical
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part, stationary AR(2) processes have been widely
employed.

The present study extends earlier work by adopting a
modelling approach which, instead of considering
exclusively the component affecting the long-run or
zero frequency, also takes into account the cyclical
structure. Using a large structure that involves
simultaneously the zero and the cyclical frequencies,
we can solve at least to some extent the problem of
misspecification that might arise with respect to these
two frequencies. We are able to show that our proposed
method represents an appealing alternative to the
increasingly popular ARIMA (ARFIMA) specifications
found in the literature. It is also consistent with the
widely adopted practice of modelling many economic
series as two separate components, namely a secular or
growth component and a cyclical one. The former,
assumed in most cases to be nonstationary, is thought to
be driven by growth factors, such as capital
accumulation, population growth and technology
improvements, whilst the latter, assumed to be
covariance stationary, is generally associated with
fundamental factors which are the primary cause of
movements in the series.

MATERIALS AND METHODS

The methodology employed in this study has been used
by Gil-Alana [6]. He analyses an extended version of
Nelson and Plosser’s dataset [7], which are fourteen US
annual macroeconomic series. He concludes that all
series may be specified in terms of fractional models
with long memory with respect to both the zero and the
cyclical frequencies. Of particular interest in that study
are the results concerning the unemployment rate: It
shows the smallest degree of integration at the zero
frequency (0.84) and the highest one at the cyclical part
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(0.11). In that study, however, the analysis reduces to
the case of white noise disturbances and it does not
allow for short run dynamics underlying the series. This
study extends the results [6] by paying specific
attention to the case of the unemployment rate, with the
implications that the results might have in terms of
theorizing, policy-making or forecasting.

The US Unemployment Rate: The stationary or
nonstationary nature of the unemployment rate has been
the study of numerous studies in recent years and it is a
major preoccupation for macroeconomists and labour
market economists. Recent contributions echoing this
pessimistic conclusion are found in a study of US
unemployment [8] and in general surveys of
unemployment models [9, 10]. The problem that has
increasingly become evident even in models using a
large set of labour supply and institutional factors is
that the models appear structurally (i.e. parameter)
unstable. The argument we advance here is that this
empirical problem is, in part, due to the inappropriate
treatment of long and short run dynamics of
unemployment in these models. On the one hand, the
hysteresis approach to unemployment suggests that
unemployment is a nonstationary highly persistent
variable since fluctuations in the natural rate of
unemployment are permanent. The econometric
approach of modelling this behaviour is throughout the
unit root model. On the other hand, the rejection of the
unit root supports reversion to a natural rate, however,
the slow reversion that is generally found is considered
a form of hysteresis as well. Blanchard and Summers
[11, 12] define hysteresis as: "a case where the degree
of dependence is very high, where the sum of
coefficients is close but not necessarily equal to one".
This high persistence of shocks is a feature, among
others, of “insider” models, [13], or of models in which
fixed and sunk costs make current unemployment a
function of past labour demand [14, 15]. The standard
approach of looking at this problem, through the
classical unit root tests, [16, 17], has two important
limitations. First, it only considers integer values for the
orders of integration: 1 in case of unit roots and 0 for
stationarity, but it does not allow for fractional
alternatives. Also, these methods have very low power
in the context of fractional alternatives [18, 19].
Besides, these methods do not take into account the
possible cyclical structure underlying the series and are
therefore inadequate to describe the pattern observed in
the unemployment rates.

In this study, we solve the two above-mentioned
problems by means of a procedure that permits us to
consider fractional orders of integration and cyclical
structures. By using fractional orders of integration at
these two frequencies, we allow for a much richer
degree of flexibility in the dynamic behaviour of the
series. Thus, if the order of integration at any frequency
(denoted by d) is higher than O but smaller than 0.5, the
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series is covariance stationary, though shocks will take
longer time to disappear than in the case of d = 0. In the
latter case, the series is said to be "short memory" and
shocks will disappear fairly soon, according to an
exponential decay, if, for example, the observations are
autoregressive. On the other hand, if d > 0, the series is
said to be "long memory" and the decay is hyperbolic.
The testing procedure described below permits us to
consider unit and fractional orders of integration and it
has standard null and local limit distributions. This is a
distinguishing feature of the tests compared with other
methods for testing, for example, unit roots, where the
limit distribution is non-standard, in the sense that the
critical vales have to be calculated numerically on a
case by case simulation study. Moreover, this standard
limit distribution holds independently of the inclusion
or non-inclusion of deterministic components and thus,
it is unaffected by the inclusion of intercepts or linear
time trends.

The Statistical Model: We assume that {x, t = 1, 2,
..., T} is the time series we observe, which is generated
by the model:

(1-L)" 1-2coswL+L)% x, = u,t = 1,2,.., (1)
t t

with x, = 0 for t <0 and where L is the lag operator (Lx,
= X..1), W is a given real number, u, is I(0), defined as a
covariance stationary process with spectral density
function that is positive and finite at any frequency on
the spectrum. and where d; and d, can be real numbers.
Let us first consider the case of d, = 0. Then, if d; > 0,
the process is said to be long memory at the long run or
zero frequency, also termed ‘strong dependent’ and so-
named because of the strong association between
observations widely separated in time. Note that the
first polynomial in equation (1) can be expressed in
terms of its Binomial expansion, such that for all real
dy,

a-Ly = i(‘.")(—l)" U
RO\

2
=1-4dL +%ﬁrf -

This type of process was initially introduced by
Granger [20, 21] and Hosking [22] and it was
theoretically justified in terms of aggregation [23-27]
and in terms of the duration of shocks [28]. The
differencing parameter d, plays a crucial role from both
economic and statistical viewpoints. Thus, if d; € (0,
0.5), the series is covariance stationary and mean-
reverting, with the effect of the shocks disappearing in
the long run; if d; € [0.5, 1), the series is no longer
stationary but it is still mean-reverting, while d; > 1
means nonstationarity and non-mean-reversion. It is
therefore crucial to examine if d; is smaller than or



American J. Applied Sci., 2 (2):579-590, 2005

equal to or higher than 1. Thus, for example, if d; < 1,
there exists less need for policy action than if d;, 2 1
since the series will return to its original level sometime
in the future. On the contrary, if d; 2 1, shocks will be
permanent and strong policy actions will be required to
bring the variable back to its original long term
projection.

Let us now consider the case of d; = 0 and d, > 0. The
process is then said to be long memory at the cyclical
part. It was examined by Gray et al. [29, 30] and they
showed that the series is stationary if |cos w| <1 and
d < 0.50 or if |cos wl| =1 and d < 0.25. They also
showed that the second polynomial in (1) can be
expressed in terms of the Gegenbauer polynomial

C'; 4, » such that, calling p = cos w,

A-2uL+1)% = 3C,, WU, €)
j=0
for all d, # 0, where:
w2 (-D*(d,),_, Qu* rd,+j
C = - 3(dy), = 2 ’
) = 2 k!(j—2Kk)! @), T(d,)

where, I'(x) represents the Gamma function and a
truncation will be required in equation (3) to make the
polynomial operational. Of particular interest is the case
of d; = 1. Then, we say that the process contains a unit
root cycle and its performance in the context of
macroeconomic time series was examined, for example,
by Bierens [31]. Unit root cycles have also been
examined in other studies [32-36]. The economic
implications here are similar to the previous case of
long memory at the zero frequency. Thus, if d, < 1,
shocks affecting the cyclical part will be mean
reverting, while d, =2 1 will imply persistence of the
shocks forever. We next describe a version of a testing
procedure, [37] that permits us to simultaneously
consider the roots at zero and the cyclical frequencies.

The Testing Procedure: Following Bhargava [38],
Schmidt and Phillips [39] on parameterization of unit
root models, we consider a general model of form:

yi=PBz+x, t=1,2, ... @
where, y, is a given raw time series; z, is a (kx1) vector
of exogenous variables; B is a (kx1) vector of unknown
parameters; and the regression errors X, are of form as
in equation (1). Robinson [37] proposes a Lagrange
Multiplier (LM) test of:

Hy: d=(d1, d) = (dior doo) =4, ©)
in a model given by the equations (1) and (4).

Clearly, d;, corresponds to the order of integration at
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the long run or zero frequency, while d,, refers to the
degree of integration affecting the cyclical part.
Additionally, we can take w = w, = 27%t/r,r=2, ..., T/2,
where r means the number of periods required to
complete the whole cycle. Note that if r = 1, the cyclical
part reduces to an I(d) process, with the singularity
restricted exclusively to the long run or zero frequency.
Based on H, (5), the differenced series is given by:

= (1-L)% (1-2coswL+12)% y, - f's,, (6)

-1
=[ T, s,') {ls,(l—L)d“’ (1 -2coswL + L2)% y
1=1 1=

a

B

= (1-L)%° (1 -2coswL + L2)% z,,
and it is assumed to have spectral density given by:

2
f(h;1) = S gA;t), -m<A < 7,
2n
where, the scalar 6° is known and g is a function of
known form, which depends on frequency A and the
unknown (qx1) parameter vector T. Unless g is a
completely known function (e.g., g = 1, as when u, is
white noise), we have to estimate the nuisance

parameter 7, for example by % = argmin g o’ (1),

where T" is a suitable subset of R? Euclidean space and

by

s=]

oX(1) = T" A;D I, A,), Wwith
2

L) = |(28T)"2 T, e ;
t=]1

Note that the tests are purely parametric, requiring
specific modelling assumptions to be made regarding
the short memory specification of u,. Thus, for example,
if u, is an AR process of form: ¢(L)u, = €, then, g =
[¢(e”‘)| with 6 = V(g,), so that the AR coefficients are
a function of t.

The test statistic, which is derived via Lagrange
Multiplier (LM) principle, adopts the form:

R = Al‘a'A‘“, 0]
&
where, T is the sample size and

i =2 EW)g0, IR ;
6 = c*(}) = ETEE‘g(xs;e)-* 1) 5
s=}

£,) Sa—log g(A;%)

A=2
T

(zwwm - Sy (Seaen,) | zemwmj

v = [wA), W, )]
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Vi) =log

2 sinL
2

v,(A,) = log|2 (cosA, - cosw)|;

and the summation on * in the above expressions is
overAe Mwhere M= {A: -T<A<T,Ag (P - Ay, P
+A), k=1,2,...,s} suchthat p,, k=1, 2, ..., s are the
distinct poles of y(A) on (-x, =].

Based on H, (5), Robinson [37] established that, under
certain regularity conditions

A

R -, %2, a Toe. (8)

Thus and unlike other procedures, we are in a classical
large-sample testing situation. A test of (5) will reject

H, against the alternative H,: d # d, if R >%; 4, Where,
Prob (%2> xia) = 0. Moreover the tests are efficient in

the Pitman sense against local departures from the null,
that is, if the tests are implemented against local
departures of the form: H,: 8 = 8T, for & # 0, the
limit distribution is a x2(v), with a non-centrality
parameter v, that is optimal under Gaussianity of u,.
There exist other procedures for estimating and testing
the fractionally differenced parameters, some of them
also based on the likelihood function. Ooms [40]
proposed tests based on seasonal fractional models.
They are Wald tests and thus require efficient estimates
of the fractional differencing parameters. He used a
modified periodogram regression estimation procedure
[41]. Also, Hosoya [42] established the limit theory for
long memory processes with the singularities not
restricted at the zero frequency and proposed a set of
quasi log-likelihood statistics to be applied in raw time
series. Unlike these methods, the tests of Robinson do
not require estimation of the long memory parameters
since the differenced series have short memory under
the null. We believe that as in other standard large-
sample testing situations, Wald and LR test statistics
against fractional alternatives will have the same null
and local limit theory as the LM tests of Robinson.
With respect to the zero frequency, Sowell [43]
employed essentially such a Wald testing procedure but
it requires an efficient estimate of d; and while such
estimates can be obtained, no closed-form formulae are
available and so the LM procedure seems
computationally more attractive.

RESULTS AND DISCUSSION

The dataset analysed is the US unemployment rate,
annually, for the time period 1897-1988. We could have
extended the series up to 2000. However, we have
preferred to work with exactly the same data set as in
Crato and Rothman [44] and Gil-Alana and Robinson
[45] in order to get better comparisons with these two

582

35

3_

2.57

24

1.51

0
1890

1.5

1988

Original Time Series

0.5]

n/\ A )\/\AAAA AL

P

-1.5
1891 1988

First Difference

0,8
0,6
0,41
0,2]

0,2

04

50
Correlogram Original Series

— A A A

P TN

-0.2)
-0.3

L 2

ATATATATRASARY.VIAEY,
vV B

0.4

50
Correlogram First Difference



American J. Applied Sci., 2 (2):579-590, 2005

0.7

0.6
0.5
0.41
0.3
0.2]
0.1

TrR

Periodogram Original Series

0.18
0.1
0.14
0.12

0.14
0.08
0.08
0.04
0.02

T2

Periodogram First Difference
Fig. 1: US Unemployment Rate and its Differences
with their Corresponding Correlograms and
Periodograms

studies. The last eight observations will be discarded
for forecasting purposes. This series is one of the
fourteen macroeconomic series examined by Nelson
and Plosser in the seminal study on unit roots [7]. It was
also employed in [45] in the context of fractional
models with a singularity restricted to the zero
frequency. Nelson and Plosser, using tests of [16, 46]
were unable to reject the existence of unit roots.
However, [45] found that this variable could be
specified in terms of an I(d) process with d < 1 and
thus, showing mean reversion. We extend the latter
approach to the case of fractional roots occurring
simulataneously at zero and the cyclical frequencies.
Figure 1 displays plots of the original series and its first
differences  along  with  their  corresponding
correlograms and periodograms. The original series
seems to be stationary, though the correlogram show
significant values at some lags far away from zero, but
also some apparent slow decay and/or cyclical
oscillation, which could be indicative not only of
fractional integration at zero but also of some cyclical
dependence across the observations. Thus, it might be
of interest to deeper examine this series in terms of a
joint model for fractional integration at both the zero
and the cyclical frequencies.
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Denoting the US unemployment rate by y,, we employ
throughout the model given by the equations (1) and (4)
withz, = (1,0),t>1, (0, 0) otherwise. Thus, under H,
(5), the model becomes:

L2,..

y = Bo + Blt + X, 9

(1 - L)" (1-2coswL+L2)%

10
t = 1,2,.., (10

X

. u

0
and if dy, = 0, the model reduces to the case of long
memory exclusively at the long run or zero frequency.
We consider separately the cases of Bo = B, = 0 a priori,
(i.e., including no regressors in the undifferenced model
(9)); Bo unknown and B, = 0 a priori, (i.e., with an
intercept) and By and B; unknown (with an intercept and
with a linear time trend) and assume that w = w, = 27,
r indicating the number of time periods per cycle.

We computed the statistic R given by equation (7) for
values d;, and d, = 0, (0.01), 2 and r = 2, ..., T/2,
assuming first that u, is white noise. In other words, for
each r, we compute the test statistic for all possible
combinations of d; and d,, with 0.01 increments. We do
not report, however, the results for all statistics, though
it was observed that the null hypothesis was rejected for
all values of d;, and dy, if r was smaller than 4 or higher
than 7, implying that if a cyclical component is present,
its periodicity is constrained between these two years.
This is consistent with the empirical findings that say
that cycles have a duration constrained between 3 and 8
years [47-52].

Table 1 displays for each r (=5, 6 and 7), each u, (white
noise, AR(1) and AR(2)) and each z,, (no regressors, an
intercept and an intercept and a linear time trend), the
values of d, and d, that produce the lowest statistics
across the d’s. Therefore, these estimates approximate
to the maximum likelihood estimates of the fractional
differencing parameters. We also display in the table

the values of R, the estimates of Bo and B, and the AR
parameters. Starting with r = 5, we see that the results
substantially differ depending on the structure of the
disturbances. Thus, if u, is white noise, the order of
integration at 0 (d,) is 0.84 or 0.89, while d, ranges
between 0.13 and 0.15. If u, is AR(1), the results are
identical for the three cases of no regressors, an
intercept and a linear time trend, withd; =0.10 and d, =
0.11. Finally, if u, is AR(2), d, is in all cases equal to 0
and d; = 0.07 and 0.08. With some slight differences,
very similar results are obtained for the cases of r = 6
and 7, the only exception being the case of r = 7 with
AR(2) u,. In such a case d, is strictly higher than I,
while d, ranges between 0.14 and 0.21. As a
conclusion; we can summarize the results in this table
by saying that they substantially change depending on
the structure of the disturbances, in particular if they are
Form autocorrelated or not.
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Table 1: Selected Models that Produce the Lowest Statistics Across d, and d,

A

R

r dl

u zZ d, Bo B T )
5 White noise ~ --- 0.89 0.13 0.00056 --- -- ---
1 0.84 0.15 0.00023 0.38810* - --- -
a, 0.84 0.15 0.00003 1.41923* -0.00613 - -
AR (1) --- 0.10 0.11 0.00397 - --- 0.72835 -
1 0.10 0.11 0.00437 0.02238* --- 0.72802
a, v 0.11 0.11 0.00497 0.03064* -0.00138  0.72021
AR (2) --- 0.07 0.00 0.27701 --- 0.88929 -0.21818
1 0.07 0.00 0.27756 0.01121* --- 0.88919 -0.21822
ay 0.08 0.00 0.28689 0.01707* -0.00104  0.88044 -0.21660
6 White noise ~ --- 0.84 0.11 0.00195 --- -- --- ---
1 0.77 0.16 0.00104 1.36515* --- --- -
a v 0.77 0.16 0.00069 1.39952* -0.00675  --- ---
AR (1) --- 0.04 0.11 0.00187 --- 0.73293 ---
1 0.04 0.11 0.00191 0.00434 - 0.73291
au 0.04 0.11 0.00418 0.00552 -0.00053  0.73200
AR (2) - 0.03 0.00 1.01690 - --- 0.91683 -0.23116
1 0.03 0.00 1.01719 0.00241 --- 0.91683 -0.23117
) 0.03 0.00 1.04164 0.00334 -0.00043  0.91637 -0.23154
7 White noise  --- 0.79 0.15 0.00102 - - --- -
1 0.70 0.20 0.00128 1.34896* --- -
a, v 0.69 0.20 0.00113 1.37295* -0.00668  --- ---
AR (1) - 0.01 0.10 0.75430 --- - 0.72994 -
1 0.01 0.10 0.75428 0.00151 - 0.72994 -
a v 0.01 0.10 0.78251 0.00185 -0.00015 0.78251
AR (2) --- 1.09 0.14 0.00064 - --- -0.10477 -0.39440
1 1.06 021 0.25525 - 1.37550% --- -0.18425 -0.35156
a,n 1.06 0.21 0.26716 1.40882* 0.00947  -0.18558 -0.34992
* significant coefficients at the 5% level '
Table 2: Diagnostic tests for the selected models
R No. u, Z, d; d; Bo T T Diagnostics
5 1 White noise  Intercept 0.84 0.15 0.38810 - --- ABC
2 AR (1) Intercept 0.10 0.11 0.02238  0.72802 - BC
3 AR (2) No regr. 0.07 0.00 --- 0.88929 -0.21818 B
6 4 White noise  Intercept 0.77 0.16 1.36515 --- --- ABC
5 AR (1) No regr. 0.04 0.11 --- 0.73293 BC
6 AR (2) No regr. 0.03 0.00 --- 0.91683 -0.23116 B
7 7 White noise  Intercept 0.70 0.20 1.34896  --- - ABC
8 AR (1) No regr. 0.01 0.10 - 0.72994 B
9 AR (2) No regr. 1.09 0.14 -0.10477 -0.39440 ABC

A: Refers to Homoscedasticity,

Thus, if they are white noise, the order of integration at
the long run or zero frequency is in all cases higher than
0.5 but smaller than 1, implying nonstationarity and
mean reverting behaviour, while d, is constrained
between 0.10 and 0.20. If u, is AR, d; is smaller by
about 0.50 compared with the case of white noise u,,
with d, being smaller than 0.20 in practically all cases.
This reduction in the order of integration at the zero
frequency may be explained by the fact that the AR
parameters are Yule-Walker estimates and thus, though
they entail roots that are automatically smaller than 1 in
absolute value, they can be arbitrarily close to 1 and
thus, they might be competing with d, in describing the
nonstationary nature of the series at such a frequency.
In the following table we try to be more specific about
which might be the best model specification for this

B: No autocorrelation
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C: Functional

series and we start with the specification of the
deterministic trends. We observed in Table 1 that the
coefficients corresponding to the time trend were found
to be insignificantly different from zero. Note that these
estimates are all based on the null differenced model,
which is assumed to be I(0) and thus, standard t-tests
apply. With respect to the intercepts, they are
significant in many cases. In those cases where the
intercept is not significant, we choose the model with
no regressors. Thus, we have nine potential models for
the series, one for each r = (5, 6 and 7), with white
noise, AR(1) and AR(2) disturbances. The last column
of the table reports the results of several diagnostic tests
carried out on the residuals. In particular, we perform
tests of homoscedasticity, no serial correlation and
functional form, using Microfit.



American J. Applied Sci., 2 (2):579-590, 2005

1: White noise w, an intercept, r=5

2: AR (1) u, with an intercept, r=15

3: AR (2) u, no regressors, r=5
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4: White noise u,, an intercept, r=6

5: AR (1) u,, no regressors, r=6

6: AR (2) u,, no regressors, r=6
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8: AR (1) u,, no regressors, r="7

9: AR (2) u,, no regressors, r=7
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Fig. 2: Residuals from the Selected Models in Table 2

The results show that there are four models passing all
the diagnostics: models 1, 4, 7 and 9. The first three of
these models correspond to the case of white noise u,,
with an intercept and r = 5, 6 and 7 respectively, while
model 9 refers to r = 7 with AR(2) v, and no regressors.
Figure 2 displays plots of the residuals of the selected
models in Table 2. As expected from the diagnostics,
models 1, 4, 7 and 9 show the closest residuals to white
noise.

Figure 3 displays the first 50 impulse responses for the
three models with white noise disturbances (1, 4 and 7).
Model 9 is discouraged in view of the fact that d, is

585

higher than 1, which is quite implausible, especially if
we take into account that unemployment rate is a
bounded variable {53]. We see in this figure that the
three models present a very similar path, with a very
slow (hyperbolic) decay. Thus, even 50 periods after
the initial shock, more than 20% of its effect remains in
the series. In Fig. 4 we concentrate on model 4 and
disaggregate the impulse responses into the trend and
the cyclical components. It is observed that most of the
variation in the impulse responses is due to the long-
term component. The same happens with respect to the
other two models.
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Table 3: Selected Models Used in the Forecasting Exercise in Section 6

Number Models employed in the forecasting exercise

Model 1 yo = 0.38810 + x; (1-L)** (1-2coswsL + L) Px, = ¢

Model 4 v = 136515 + x;  (1-L)*"7 (1-2coswg + L)%, = ¢

Model 7 ¥ = 1.34896 + x; (1-L)*™ (1-2cosw; + L), = g

ARMA (1, 1) v = 0.83058 + 0.53257y,; + & + 0.61857¢,

ARIMA (0, 1, 2) (1 - L)y, = -0.00694 + &. + 0.17719¢., - 0.35817¢,,

ARIMA (1, 1, 2) (1 - Dy, = -0.00662 + 0.27850y,; + &. - 0.06769g,, - 0.45037¢.,
ARFIMA (0 0.85, 0) y. = 1.46257 + xg (1-L)°*®x, = ¢

Forecasting Performance: Finally, we deal with the
forecasting ability of the proposed models in
comparison with other more classic representations for
the US unemployment rate. In particular, we compare
the fractional cyclical models proposed above with
ARMA, ARIMA and ARFIMA models. We start by
performing several unit root tests and use tests of [16,
46]. In both cases, we were unable to reject the null
hypothesis of a unit root in most of the cases. However,
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it is well known that these tests have very low power
against both AR and fractional departures. Thus, we try
ARMA(p, q) and ARIMA(p, 1, q) models, with p and q
smaller than or equal to 3. We use the Akaike (AIC)
and Bayeian (BIC) information criteria. Starting with
the ARMA case, both criteria lead to the same model,
with p = q = 1. Using the ARIMA models, the AIC
chooses an ARIMA(I, 1, 2), while the BIC an
ARIMA(O, 1, 2). Finally, we also permit ARFIMA
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models and using a procedure of estimating by
maximum likelihood [43], again with p, q < 3, the
selected model is an ARFIMA(O, 0.85, 0) with an
intercept. In another study, the authors conclude that the
best model specification is an ARFIMA(O, 1.01., 0) but
they do not include deterministic trends [44]. Table 3
displays all the selected models, along with their
parameter estimates.

We compare all these models in terms of their
forecasting performance. Standard measures of forecast
accuracy are the following: Theil’s U, the mean
absolute percentage error (MAPE), the mean-squared
error (MSE), the root-mean-squared error (RMSE), the
root-mean-percentage-squared error (RMPSE) and
mean absolute deviation (MAD) [54]. Let x, be the
actual value in period t; f; the forecast value in period t
and n the number of periods used in the calculation.
Then:

—£)
a. Theil’s U: L—i)—z
VZ(X! - x(-l)
b. Mean absolute percentage error (MAPE):
Z‘(Xl - fl)/xll‘
s
¢. Mean squared error (MSE): Z(x -f) ;
n
d. Root-mean-percentage-squared error (RMSP):
Z(X, - f‘)zlft .
IR —
2
. Root-mean-squared error (RMSE): Z:M)—;
n

f. Mean absolute deviation (MAD): ___le‘n- f‘l.

The first type of evaluation criteria measures the spread
or dispersion of the forecast value from its mean. The
MAD belongs to this category. It measures the
magnitude of the forecast errors. Its principal
advantages are ease of interpretation and the fact that
each error term is assigned the same weight. However,
by using the absolute value of the error term, it ignores
the importance of over or underestimation.

The second type of accuracy measure is based on the
forecast error, which is the difference between the
observation, x, and the forecast, f. This category
includes MSE, RMSE and RMSPE. MSE is simply the
average of squared errors for all forecasts. It is suitable
when more weight is to be given to big errors, but it has
the drawback of being overly sensitive to a single large
error. Further, just like MAD, it is not informative
about whether a model is over- or under-estimating
compared to the true values. RMSE is the square root of
MSE and is used to preserve units. RMSPE differs from
RMSE in that it evaluates the magnitude of the error by
comparing it with the average size of the variable of
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interest. The main limitation of all these statistics is that
they are absolute measures related to a specific series
and hence do not allow comparisons across different
time series and for different time intervals. By contrast,
this is possible using the third type of accuracy
measure, such as MAPE, which is based on the relative
or percentage error. This is particularly useful when the
units of measurement of x are relatively large.
However, MAPE also fails to take over or under
estimation into consideration.

Unlike the measures mentioned above, Theil’s U is a
relative measure, allowing comparisons with the naive
(X, = Xy1) or random walk model, where a U = 1
indicates that the naive method is as good as the
forecasting technique, whilst U < 1 means that the
chosen forecasting method outperforms the naive
model. The smaller the U-statistic, the better the
performance of the forecasting technique relative to the
naive alternative. Despite some attractive properties, the
U-statistic has the disadvantage of not being as easily
interpretable as MAPE; further, it does not have an
upper bound and therefore is not robust to large values.

The seven selected time series models (fractional and
cyclical differencing, FCD; fractional differencing, FD;
and integer differencing, ID) were used to generate the
8-year-ahead out-of-sample forecasts. Each forecast
value was calculated and compared with the actual
value of the series. Then, the above six criteria were
used to rank the forecasting ability of the proposed
models. The ranking in terms of forecasting
performance is given in Table 5

Computing forecasts within fractional (cyclical or non-
cyclical) models is not trivial since the model cannot be
written as a finite order ARMA model [55]. However, it
can be sorted out by using the assumption y, = 0, for t <
0 and the recursive equations, which are involved in the
fractional processes. The forecasts for the zero and
cyclical fractional models were obtained as follows.
Consider, for example, Model 1:

y, = 0.38810 + x;

(11)
A-L)** (1 -2cosw,L + 1) x = g.
This model can be re-written as follows:
(1-Ly**(1-2cosw,L + L))"y = 0.38810w, + ¢, (12)

where, w=(1-L)***(1-2coswsL+L%)%"], and 1, is the t*
element of a time series vector of 1s. Using now the
expansions in equations (2) and (3) in the left-hand-side
in (12)

(1-Ly**(1-2cosw,L + 2"y,

13
=(-qL-al?- .)1-BL-B,L - .0y, 13

and thus, rearranging (12) and (13),
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Table 4: One-period-ahead Forecast for Each of the Selected Models

Year  Truevalue  Model I Model4  Model7 ARMA ARIMA®® ARIMA*  ARFIMA
1981 2.028 1.966 2.002* 1.976 1.974 1.971 1.999 2.001
1982 2272 1.947 2.010 2.019 1.943 1.982 1.967 2.216*
1983 2.261 2.178 2.185 2218 2.243 2.296 2.273* 2227
1984 2,014 2.198 2.018* 2.152 2.046 2.144 2.102 2.025
1985 1.974 2.017 1.944 1.908 1.884 1.997 1.920 1.979*
1986 1.945 2.013 1.946* 1.928 1.937 2.009 1.997 1.949
1987 1.824 1.951 1.840* 1.953 1.872 1.936 1.942 1.842
1988 1.704 1.810 1.867 1.865 1.772 1.820 1.821 1.731*
* The forecast that most approximate to the true value across the different models
Table 5:  Overall Ranking of Forecasting Performance using Different Criteria
Model Theil’s U MAPE MSE RMSD RMSE MAD
Model 1 7 6 7 7 7 7
Model 4 2 1 2 2 2 2
Model 7 4 3 4 4 4 6
ARMA 3 7 3 3 3 3
ARIMA 6 2 S 5 5 5
ARIMA 5 4 6 6 6 4
ARFIMA 1 5 1 1 1 1
y, = (L + v,I* + v, D)y, + 0.38810w, + g, numerically on a case by case simulation study. A
Monte Carlo simulation work [6] shows that the tests
) described above perform relatively well even with
where, the ©YS were obtained throughout the

combinations of the lags polynomial in the right-hand-
side in equation (13). Then, it can be easily seen that:

Yroer = (WL + 1,7 + YJLJ)yT+kIT + Wrire

Table 4 resumes the 1-period-ahead forecasts for each
of the selected models. We see that for most of the
years, Model 4 produces the best results, followed by
the ARFIMA model. However, if we make the
predictions in 1980 with an 8-year horizon, we see, in
Table 5, that the best results are those corresponding to
the ARFIMA model, i.e., with no cyclical components,
though followed very close by Model 4 in all cases
except for the MAPE criterion, where Model 4 seems to
be again the best approach.

CONCLUSION

In this study we have presented a testing procedure that
permits us to simultaneously consider unit and
fractional roots at the long run and the cyclical
frequencies in raw time series. The tests are very
general and permit us to consider as particular cases of
interest the situations of unit (or fractional) roots either
at zero or the cyclical components. Unlike most of other
procedures, they have standard null and local limit
distributions and this standard behaviour holds
independently of the inclusion or non-inclusion of
deterministic trends and autocorrelated disturbances.

This is an unusual property compared with other
methods involving nonstationary fractional structures,
where the limit distribution have to be obtained
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small samples of an approximate size to the one used in
this work.

The tests were applied to the unemployment rate in the
US, using a series that is part of an extended version of
Nelson and Plosser’s dataset [7]. This series was also
examined in [44, 45]. However, in these two studies,
they just concentrate on the long run or zero frequency
and do not pay any attention to the possible cyclical
structure underlying the series. The results show that
both the long run and the cyclical structures present a
component of long memory behaviour. Additionally,
the root at zero seems to be more important than the
cyclical one, implying that shocks affecting the long
run are more persistent than those affecting the cyclical
part. They are also consistent with the empirical fact
observed in many macroeconomic series that the long-
term evolution is nonstationary, while the cyclical
component is stationary and persistent,

Our model differs from other trend-cycle
decomposition models, (unobservable components
(UC), Beveridge and Nelson (BN)), mainly in the
treatment of the cyclical part. Thus, the UC models
consider the trend as a random walk, (or more generally
an I(1)), process, while the cycle is described by a
stationary ARMA(p, q) process. Harvey and Jaeger (3]
suggest specifying p = 2, which allows the cycle to be
periodic in the sense of having a peak in its spectral
density function. In our model, we also allow for a peak
at the spectrum, however, instead of using
autoregressions, which produce abrupt changes in its
asymptotic behaviour, we consider fractional models,
which the corresponding smoothness associated to the
limit behaviour across the orders of integration.
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It would also be worthwhile proceeding to get point
estimates of the fractional differencing parameters in
this context of trends and cyclical models. For the
trending component the literature is extent, {56-61]. For
the cyclical part, some attempts have been made in [62,
63]. However, the goal of this study is to show that a

fractional model with the roots simultaneously
occurring at zero and the cyclical frequencies can be a
credible alternative ~when modelling the US

unemployment rate. In that respect, the results
presented in this work leads us to some unambiguous
conclusions, with the periodicity constrained between 4
and 7 years and the order of integration being higher at
the zero frequency than at the cyclical part.

A potential drawback of the present work is that it is
based on an univariate model, with the limitation that it
imposes in terms of theorizing, policy-making or
forecasting. Theoretical models and policy-making
involve the relationships between many variables and
the forecast performance can be improved through the
use of many variables (e.g., factor based forecasts based
on data involving hundreds of time series beat
univariate forecasts [64]). However, the univariate work
has relevance in the context of business cycles, firstly
because different time series may have different
amplitudes and different orders of integration and there
is not yet theoretical econometric models that permit us
to examine cyclical fractional models in a multivariate
framework. In that respect, the present study can be
considered as a preliminary step in the analysis of
business cycles from a different time series perspective.
Finally, the issue of data mining is another worry for
economists when looking at time series models. There
are so many possible models that may be relevant and
so many modelling choices that econometricians are
almost sure to find something purely by data mining.
For this reason, sequential testing and other procedures
based on information criteria are widely distrusted and
model averaging methods have become very popular.
Thus, it might also be worthwhile to broaden the class
of models under consideration and address the data
mining problem, along with other issues (e.g., structural
breaks) using averaging approaches. Work in all these
directions is now under progress.
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