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Abstract: This study examines a particular form of price discrimination, known as chaotic 
discrimination, which has the following features: sellers quote a common price but, in reality, they 
engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price 
discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no 
theoretical salience to support this kind of price discrimination. By straining the logic of non-linear 
dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt 
profit-maximising price discounts. A model is developed to argue that such forms of discrimination may 
derive from the regions of instability of a dynamic model of price discounts.  
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INTRODUCTION 

 
Joseph Bain offers examples of various forms of price 
discrimination as arbitrary and non-profit maximizing 
and therefore labels them as purely unpredictable. He 
calls these forms of price discrimination ‘chaotic’ [1]. 
Price discrimination is chaotic since it does not conform 
to profit maximization and as a result this form of pricing 
does not constitute an equilibrium in the Nash sense [2]. 
Since these prices do not form a Nash equilibrium there 
remains scope for sellers to unilaterally enhance their 
individual profits. Yet sellers fail to do so. The market is 
beset with a non-equilibrium and inefficient outcome. 
The precise aim of the present study is to apply the recent 
developments in non-linear and deterministic dynamic 
system to explain chaotic discrimination. Despite being 
an important component of industrial economics [3], this 
is the first attempt to explain chaotic discrimination in 
terms of a cohesive model.  
During the last three decades the discovery of chaotic 
dynamics in simple non-linear deterministic systems has 
been a milestone in scientific research. The issue at stake 
is that even though all time paths of a deterministic 
dynamic system are bounded, trajectories that start close 
together diverge, or separate, exponentially. A significant 
import of chaotic behavior is that a precise prediction in 
deterministic models is not possible. Deterministic 
models can thus display fundamental randomness. A 
gradual collection of information does not remove this 
randomness nor makes prediction feasible. For 
economics science the study of chaotic behavior assumes 
great significance since the core of deductive equilibrium 
approach relies on a mutual consistency and fulfillment 
of expectations, or predictions, of agents. Typically, 
industrial economists focus their attention on economic 
models with regions of local stability on the assumption 
that regions of instability are of little importance and 
more of a pathological case [4].  The fundamental 

argument is that industrial economics does not find 
exploding time paths of any significant variable. 
However, the development of chaotic behavior 
significantly undermines this dismissal of regions of 
instability that can actually generate complex, yet 
deterministic, dynamics within bounds. The meeting 
point between chaotic dynamics and chaotic 
discrimination is the common feature of non-equilibrium 
behavior.  
Bain [1] identified two principal forms of price 
discrimination as chaotic discrimination. The 
fundamental characteristic of such discrimination, he 
argued, embodies an element of irrationality in pricing 
decision. As a result such prices are believed to be 
arbitrary and non-profit-maximizing [1]. The first form is 
popular as the Basing-Point Pricing. Many goods are 
sold at delivered prices, which are the factory prices plus 
shipping mark-ups while sellers are disparately located. 
Every seller quotes a delivered price at a delivery point 
that equals the base price of the nearest seller plus the 
shipping mark-up from the nearest seller. As a result, 
price discrimination may emerge if buyers do not buy 
from the nearest seller. Such a form of discrimination is 
labeled as chaotic since the delivered prices are 
inconsistent with joint-profit maximization. Such a 
scheme of pricing evolved between 1880s and 1949 in 
cement, steel and certain other industries but after 1949 it 
gradually declined [3].  
The second type of chaotic discrimination emerges when 
sellers quote a common price but secretly engage in 
arbitrary price discounts. As a result, different buyers pay 
different prices. Such price discrimination, Bain [1] 
argued, does not conform to a pattern of joint profit 
maximization and, hence, is arbitrary and non-profit-
maximizing. Bain [1] rationalized such discrimination as 
an effort by oligopolists to avoid an open price war. In 
his opinion, there may exist a uniform pricing rule that 
would engender higher individual as well as joint profits. 
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Yet the chaotic price discrimination is omnipresent in 
modern markets. What we understand is that this form of 
discrimination may not be underpinned by instrumental 
rationality of sellers and may not be an equilibrium 
phenomenon. This scheme of pricing, hence, came to be 
termed as chaotic discrimination that embodies a 
systematic departure from a profit-maximizing 
equilibrium pattern.  
This form of chaotic discrimination is an important 
element of modern markets, but what causes it remains 
unclear. The explanation of Bain is inadequate for two 
reasons: first, we do not understand why sellers fail to 
arrive at an efficient equilibrium confirming 
conjectures/predictions of each of others’ price discounts. 
Secondly, we know very little about the forces that stop 
sellers from secretly making Pareto improving price 
discounts and converge on a Nash equilibrium. The main 
purpose of this study is to address the second form of 
chaotic discrimination to answer these questions. A 
stylized case of chaotic discrimination was considered: 
the incumbent sellers choose a common posted price, but 
they engage in ‘secret’ price discounts from the posted 
price. We develop a model to argue that such 
discrimination may derive from the regions of instability 
of a dynamic model of price discounts.  
 
The Model: We consider the classic case of duopoly in 
which two sellers compete against each other. A duopoly 
is the earliest model of game economists developed in 
the 18th century to analyze interactive decision-making. 
The model can easily be extended to a n-person game 
[5]. In this model the strategic variable is price discounts. 
Each firm simultaneously chooses a price discount that 
impinges on own and rival profits. A price discount by 
seller i affects the number of customers of seller j (cross 
effect) while the own price effect works through the 
individual and downward sloped demand function. Let 
us now characterize the game: 
 
Assumption 1: We write the revenue function of the ith 
seller as the following: 
 
Ri=Mi� (P

D-�Pi) (1a) 
 
Where, Mi is the number of customers who purchase 
from seller i and � is the demand function of each 
customer. �Pi is the price discount undertaken by seller i, 
PD is the posted price. This assumption about the revenue 
function comes from Stiglitz [6].  
 
Assumption 2: We also assume the following: 
 
Mi=α(PD-�Pj) (1b) 
 
�=β1 -β2 (P

D-�Pi) (1c) 
 
Once again it follows Stiglitz [6]. The general restriction  

is that �Mi/��Pj<0, ��/��Pi)>0. The implicit assumption  
of (1b) is that buyers obtain information through ‘word-
of-mouth’ that will allow each seller to maintain different 
price for a finite span [7]. Note that (1c) is the usual 
downward-sloped demand function. 
The profit function of seller i, �i, reduces to the 
following: 
 
Ri=� (P

D-�Pj)[β1PD +(�2-�
1)�Pi-�2�Pi

2]          (2a) 
 
Where: 
β1==β1 -β2P

D (2a’) 
 
For the sake of simplification, we assume-without any 
loss of analytical bite- the cost of production is assumed 
to be zero. 
 
Assumption 3: At date t+1 seller i makes incremental 
changes in the price discount as: 
 
�Pi (t+1)= �Pi (t) + H1[δ�i(t)/δ�Pi (t)] (2b) 
 
[δ�i(t)/δ�Pi (t)] is the marginal change in profits for a 
small change in price discount at date t. H1 is a positive 
coefficient. The story is that a seller starts with a price 
discount and then gropes for the best discount by 
changing the discount: he raises the discount at date t+1 
by a factor H1 if the discount at t increased his profits. He 
lowers the discount at date t+1 by the factor H1 if the 
discount at date decreased his profits. This type of 
dynamics has been studied in [8]. 
 
Assumption 4: We further assume the existence of 
symmetric Nash equilibrium. That is, at equilibrium 
 
�Pi = �Pj=�P (2c) 
 
Theorem 1: The price dynamics is then reduced to the 
following: 
 
�P (t+1)= λ-θ �P (t) + γ [�P (t)]2 (2d) 
 
Where:  
λ=H1αPD((β2-β1), γ= 2αH1β2,  
θ=H1(β2-β1)α+2αH1β2PD-1 
 
Proof: Differentiating   (2a)   with    respect    to   �Pi  
and   substituting   it   in   (2b)   and using (2c) yields 
(2d). QED.  
 
Theorem 2: The dynamics as represented by (2a) has 
two fixed points: 
 
�P*=[1+θ+SQRT{(1+θ)2-4λγ}]/[2γ] (3a) 
 
�P**=[1+θ-SQRT{(1+ θ)2-4λγ}]/[2γ] (3b) 
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Both these equilibria are the steady state of the above 
dynamics. It is instructive to see that the first 
equilibrium given by (3a) is unstable. The second 
equilibrium given by (3b) is stable if : 
 
SQRT{(1+θ)2-4λγ}<2 (3c) 
 
Proof: Substituting �P (t+1)= �P (t)= �P into equation 
(2d) yields the quadratic equation whose two roots give 
the steady state of the above dynamics. Evaluating the 
slope of the equation (2d) for �P* and �P** will give 
us the rest of the theorem. QED. 
 
Theorem 3: It is now simple to rescale the variables to 
arrive at the following dynamics: 
 
Xt+1= B Xt (1-Xt) (4a) 
 
Where:  
Xt= γ (�P* -�P (t))/B (4b) 
 
B=1+ SQRT{(1+θ)2-4λγ} (4c) 
 
Equation (4a) is the much celebrated logistic equation 
expounded by May [9] and Feigenbaum  [10]. From 
May [9] we know that chaotic behavior sets in for 
B≥3.57.  
 
Proof: The proof, being simple, is omitted. QED. 
 

DISCUSSION 
 
It is now possible to characterize the dynamics: for 
1<B<3 the dynamics of price discounts converge to the 
stable equilibrium �P**. This is the region of stability 
that plays an important role in equilibrium analysis as 
discussed in Gangopadhyay [10]. If B is increased 
above 3, �P** becomes unstable and the price 
discounts converge to a stable 2-period cycle. As B is 
increased further the stable period cycles of n bifurcates 
into cycles of period 2n. From Feigenbaum [9] we 
know that the range of A values for which the nth cycle 
is stable shrinks at a geometric rate. For B>3.57 the 
price discounts evolve through a cycle of infinite 
period. The price discounts are within the relevant 
bounds but never repeat. For a higher order price 
discounts may look like a random process but these 
discounts are fully deterministic.  
 

CONCLUSION 
 
We consider price discounts in a dynamic context. 
Customer flows to a seller are influenced by secret prices 
and price discounts chosen by its rival. The demand 
function of each customer is linear and downward sloped 
in prices. Since price discounts are secret, an 
instantaneous Nash equilibrium is not arrived at. Sellers 
start off with initial price discounts and gradually update 
these discounts t enhance their profits. We have shown 
that the dynamic path of price discounts will be 

characterized by chaotic behavior in the region of 
instability.  
The finding has important bearings: it is typically 
assumed in the deductive equilibrium approach to 
modern economic theory that the Nash equilibrium 
dispels all systematic prediction errors and the economic 
system settles in an equilibrium characterized by self-
confirming and mutual-best responses. This approach has 
its most dominant influence on modern industrial 
economics, popularly known as industrial organization. 
The deductive equilibrium analysis has contributed to a 
better understanding of modern industrial economics. 
However, little attention has been given to the regions of 
instability. We established that the postulated price 
discount dynamics can exhibit chaotic behavior. Firms 
now fail to see systematic errors. Firms also fail to make 
long-run predictions with certainty even thought they act 
in a deterministic world. Time profiles of prices and 
quantities, which start very close together, will separate 
exponentially. The strength of Nash equilibria gets 
terribly emasculated. We conclude that an application of 
standard results of chaotic behavior can be a very 
important step forward to understand the dynamics of 
industrial economics.  
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