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Abstract: The study investigates conditions under which endogenous cyclic behavior may be 
observed within the context of Predator-Prey (Lotka-Volterra) Models. The analysis also establishes 
conditions under which such behavior is non-existent and hence establishes conditions for global 
convergence to the interior equilibrium, whenever it exists. The results are then applied to two 
diverse sets of economic exercises and shows how the conclusions of those exercises may be 
established under a much weaker set of assumptions. Based on these discussions, a numerical 
example of robust periodic behavior is provided. 
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INTRODUCTION 
 
 Economic fluctuations are matters of great intrinsic 
interest and there is a rich history of attempts to provide 
an explanation for such behavior of particular interest 
are fluctuations which persist. There have been, 
basically, two types of explanation: the first relies on 
exogenous shocks, either from the demand side or from 
the supply side (See, for instance the contribution of 
Kydland and Prescott[1], mentioned in the citation of the 
Nobel Memorial Prize in Economic Sciences in 2004) 
to explain fluctuations in economic activity; the second 
approach is to consider whether cyclical behavior could 
arise from internal or endogenous sources (Examples of 
this type may be found in the works of Schumpeter[2], 
Wicksell[3] for example. For Keynesian type models 
where cyclical behavior stems from an interaction 
between a multiplier from the consumption side and an 
accelerator from the investment side, among the more 
influential have been the contributions by Goodwin[4,5]). 
The present paper belongs to the latter category. 
 Further, we should point out that by cyclical 
behavior we shall mean persistent cyclical behavior; 
behavior of trajectories which spiral in towards an 
equilibrium or steady state is not really proper cyclical 
behavior since the extent of these fluctuations will 
eventually die out. Finally, we shall be concerned with 
models of the Predator-Prey (alternatively, Lotka-
Volterra) type. These models have been studied by 
economists since the time Samuelson[6,7] turned his 
attention on them; one of the most well known 
applications of this model is the paper by Goodwin[4]. 
Such models continued to be studied and applied (More 
recent contributions include Mukherji[8] which 
examines the robustness of cyclical paths in Goodwin[4], 

Brander and Taylor[9], who apply the model to analyze 
the Easter Island Mystery, Cressman et al.[10] who apply 
this model to study the evolutionary dynamics of crime. 
There have been applications in areas other than 
economics[11], as well. 
 The Predator-Prey Model may be described thus. 
Consider an environment made up of two species of 
life-forms, one of which preys on the other: the predator 
and the prey. Let the population of the prey be 
designated by x and that of the predator by y. The 
simplest formulation in Samuelson[6] or Goodwin[4], for 
instance, involves the following basic assumption: in 
the absence of the predator, the population of the prey 
grows at a constant proportional rate a; and on the other 
hand, in the absence of the prey, the population of the 
predator decays at a constant proportional rate b (here 
both a and b are assumed positive). In the presence of 
both the prey and predator, adjustments to this basic 
story have to be made and we have the following Eq. (1): 
 

)x x(a y) and y y( x b= − α = β −ɺ ɺ  (1) 
 
where, α, β are assumed to be positive and are to be 
interpreted as the effect of the presence of one population 
on the other. We shall refer to (1), as the basic Equations. 
 There are two equilibria for the above system of 
equations: 
 

(x = 0,y = 0) {Trivial Equilibrium or (TE)} 
(x = b/β, y = a/α) {Non-Trivial Equilibrium or (NTE)} 
 
 We are interested in what happens to the solution 
to the system (1), o o o o

t ˆ ˆ ˆ ˆ(z ) where   z (x ,y )ϕ =  beginning 

from an initial configurationoẑ . In particular, we shall 
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be interested in finding out whether any periodic or 
cyclical behavior is possible. 
 The paper begins by setting out first, the well-
known dynamics emanating from the basic equations as 
a benchmark; this is followed by noting the change in 
results when there is a perturbation in parameter values. 
 The sharp differences in results make the next step 
worthwhile; we set-up a general formulation of the 
Predator-Prey Model and establish that under standard 
conditions, periodic behavior is non-existent. This also 
allows us to deduce what changes need to be introduced 
into the basic structure to allow for periodic behavior. 
We study the most general form of the predator-prey 
model; this was investigated by Kolmogorov[12] way 
back in; a thorough report on these results is contained 
in Freedman[13]. We shall show that our results are more 
general and our point of focus is different too.  
 We use the derived results to discuss two 
applications of the Predator-Prey Model; we show that 
our methods reveal that the specific assumptions made in 
these applications are not really needed for the results 
each have deduced and, in the light of these exercises, we 
go on to construct an example of a Predator-Prey Model, 
where robust periodic behavior is exhibited: this example 
also serves as an illustration of how the framework of the 
Predator-Prey Model needs to be altered to admit such 
behavior. A last section contains, by way of conclusion, 
some discussion of related literature.  
 
The dynamics of the basic equations: We note first of 
all, the following local stability properties of the 
equilibria mentioned above. The details can be obtained 
from Hirsch and Smale[14]. 
 
Claim 1: For the system (1), TE is a saddle point while 
NTE is a center.  
 
 Next, we note that, so far as global stability 
considerations are concerned, we may make the following: 
 
Claim 2: With any z° = (x°, y°)>(0,0) as initial point, 
the solution to the system (1) is a closed orbit around 
NTE.  
 The above claim may be seen from the following 
diagram (An analytical proof is provided in Hirsch and 
Smale[14]. 
 This result has some times been used to explain 
why the population of some species constantly keep 
chasing one another and never settles down to any fixed 
values. We investigate next what happens when we 
change the basic story a little bit (An investigation into 
the robustness of the periodic behavior exhibited by the 
solution to (1) is carried out in Mukherji[8]). 
 
A perturbation: Suppose that we say that when left to 
itself, in the absence of the predator, the population of 

the prey behaves according to a more complicated but 
still fairly standard rule, the logistic rule: 
 

x
x xa 1

K
 
 
 

= −ɺ  

 
where, K is the carrying capacity of the preys: i.e., the 
environment cannot sustain a population which is 
greater than K; in the basic equations, it was assumed 
that K is infinite. Thus the environment places a 
restriction on the growth of population of preys. Now 
adjusting for the presence of predators, we have (writing 
γ = a/K > 0) and keeping the behavior of the predator 
population unaltered, we have the following Eq. (2): 
  

)x x(a x y) and y y( x b= − γ − α = β −ɺ ɺ   (2) 
 
 Notice that by setting γ equal to zero we revert 
back to the earlier system. Due to the presence of the 
term γ, it may be noted that: 
 
Claim 2: The system (2) has the following three 
equilibria: 
 

( )( ) ( )x 0,  y 0 TE ,(x a / g,  y 0) MPE= = = =  
 
 And: 
 

( )(x b / b,  y d) NTE= =  
 
 Where: 
 

a bβ − γδ =
αβ

 

 
 We assume δ to be positive. In other words, we 
have yet another restriction γ<aβ/b; since we are 
interested in showing what happens for small values of 
the parameter γ , this restriction is not a problem for our 
analysis. Finally, in the NTE, although the size of the 
prey is the same as in the earlier case (when γ = 0), the 
size of the predator population is reduced. 
 We turn next to the stability properties of these 
equilibria; first, as before, we consider the local 
stability of equilibria. Once again, details are to be 
found in Mukherji[8]. 
 
Claim 3: For the system (2), TE is a saddle point; 
MPE is a saddle point while NTE is locally 
asymptotically stable. 
 
 In addition, we have the following global stability 
result: 
 
Claim 4: For any solution to (2) with a strictly positive 
initial point converges to the NTE.  
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Fig. 1: The predator-prey model (a = 2, b,α, β = 1) 
 

 
 
Fig. 2: The predator-prey model (a, b,α, β as above; γ 

= 0.5) 
 
 To clarify the situation further, consider the Figure 
below. The difference in results due to the presence of 
the term γ is clear when one compares Fig. 2 with the 
earlier Fig. 1. 
 To sum up: the dynamic conclusions of the basic 
equations are very sensitive to the assumption made on 
the rate of growth of population of preys (or predators). 
Details of similar exercises may be found in Mukherji [7]. 
In view of this it is meaningful to try to explore whether 
any general statement can be made about cyclical 
behavior in such models (the statement in Hirsch and 
Smale[13], the paragraph just before the statement of the 
section titled Problem). 
 
A general Lotka-Volterra model: We attempt here to 
provide a general treatment of Lotka-Volterra Models 
and identify conditions for periodic behavior and 
convergence. Apart from being of independent interest, 
such results might be of specific interest to a very 
varied set of problems, as we hope to illustrate. 
 The basic feature of the predator-prey model or the 
Lotka-Volterra models is a pair of functions. Let M, N 
be two functions M,N: ℜ+×ℜ+→ℜ be continuously 
differentiable (ℜ+ denotes the non-negative real line, [0, 
∞]) and satisfy the following: 

P1. y

x

M(0,0) 0,  0 N(0,0);   M (x, y)

0 ,N (x, y) 0  (x,y) + +

> ≥
< > ∀ ∈ℜ × ℜ

 

 
(A subscript will denote a partial derivative). 
P2. Mx(x,y)≤0,Ny(x,y) ≤0∀(x,y)∈ℜ+×ℜ+ (Non-zero 
values of the partials Mx, Ny are interpreted as the 
existence of ‘social phenomenon’ by Hirsch and 
Smale[14]. P2 ensures that such phenomenon do not 
increase the rates of growth of population of preys and 
predators). 
 A pair of functions M,N satisfying the above two 
conditions define a Generalized Lotka-Volterra System 
(GLVS) given by Eq. (3): 
 
x xM(x,y),  y yN(x,y)= =ɺ ɺ  (3) 
 
  As before, the above formulation captures that there 
are two species in a particular environment, one of which 
preys on the other (the predator and the prey). The 
predator requires prey in order to subsist while the prey 
can live off the environment (this is not taken up for 
consideration within the model); using the earlier 
notation, the rates of growth of the population of the 
species are related as follows: for the prey, the greater the 
population of the predators, the lower is the prey's rate of 
growth other things being equal My<0; and since the 
environment too is limited in some way, the rate of 
growth of the prey, given any fixed level of the 
population of predators, is decreasing, if at all, in its own 
population level (Mx <0). For the predator, on the other 
hand, the rate of growth of its population increases with 
the population of the prey and decreases with its own 
population, other things remaining the same. This is the 
rationale for P1 and P2. We call the system (3), a 
General Lotka-Volterra System. Such a system was first 
studied by Kolmogorov[12]; however as we shall show 
later, the restrictions employed were stronger (As an 
example, apparently Kolmogorov required to impose xNx 
+ yNy>0; in Freedman[13] where a Kolmogrov type result 
is proved, use is made of not only this but many other 
conditions as well). 
 We begin by noting that for the system (3) given 
P1 and P2, the following are the types of equilibria (A 
fourth possibility with only predators, is of course 
impossible under our assumptions): 
 
• No Species E1: (0,0) 
• No Predator E2: ( x̂ , 0), x̂  > 0 
• Both Species E3: ˆ ˆ(x,y) (0,0)>  
 
 Notice first of all, that these equilibria are 
independent of one another. Consider for example the 
following specifications of the functions M,N Eq. (4): 
 
M(x, y) a x by;  N(x, y) dx y c= − α − = − β −  (4) 
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where, a, b, c, d > 0,β, α ≥  0. It is immediate to note that. 
 
Claim 6: For the above specification of the functions M, 
N, E2, E3 both exist if and only if α>0;αc<αd. If α = 0, 
E3 exists but E2 does not; whereas if α > 0 but α c > a d, 
E2 exists but E3 does not. 
 Consider, next, the following forms of the 
functions M,N Eq. (5): 
 

1 ax
M(x, y) by and N(x, y)

1 x
1 dx

y c,0 a 1,b, 0,d c 1
1 x

+= −
+

+= − β − < < β > > >
+

 (5) 

 
 Note that M(0,0)>0>N(0,0)=1-c; Mx, My<0;Nx>0, 

x y x yM ,M 0;  N 0,N 0< > < . 
 
Claim 7: For M,N given by (5) there is no 

a d c
E ; and  2 b

−> ⇒
β

 there is no E3.  

 
Proof: The first part of the claim is immediate since 
M(x,0) = 0 has no positive solution. Notice that along 
M(x, y) = 0, we have y>a/b. 
 Similar considerations along N(x, y) = 0 lead us to 
conclude that along this curve, y>(d-c/β. Consequently 
the claim follows. 
 The above discussion goes to show that the 
existence of equilibria E2 and E3 are independent of one 
another and we need to strengthen P2 in order to 
specify existing equilibria. We do so below: 
 

P3.

x yi.M (x, y) 0,N (x, y) 0 (x, y) ;

ii. There is some positive integer K such that 
M(x, y) 0 if either x K or y K;
iii. For any y 0, x(y) N(x(y), y) 0;  
futher for each x 0, K(x) y K(x) N(x,y) 0.

+ +< < ∀ ∈ℜ × ℜ

≤ ≥ ≥
≥ ∃ ∋ >

≥ ∃ ∋ ≥ ⇒ ≤

 

 
 To maintain our analogy with x being the 
population of prey and y being the population of 
predators, the above specifies that first of all, the rates 
of growth of population of preys and predators are 
decreasing functions of their own population, other 
things remaining the same; P2 had merely required that 
these be non-increasing functions. Secondly, if either 
the population of preys or that of the predators are large 
enough, the rate of growth of population of preys 
cannot be positive; and finally, for the growth rate of 
the population of predators to be positive, given any 
current level of its population, requires an adequate 
population of preys; and given any population of preys, 
if the population of predators is large enough, the 
growth rate of the predator population will be non-
positive. That these requirements are not too restrictive 
may be seen by referring to the specification given by 

(4) when all the parameters a,b,c,dα,β are positive: this 
system satisfies P1 and P3. We note that: 
 
Claim 8: Under P1 and P3, there are at most three 
equilibria; E1, E2 always exist; E3 may also exist under 
some conditions (Essentially, the curves M(x,y) = 0, 
N(x,y) = 0 must intersect in the positive orthant). 
 
Proof: We have already seen that there are three types 
of equilibria possible; P3 ensures that there cannot be 
multiple equilibria of any type, since intersections 
between the curves M(x,y) = 0, N(x,y) = 0, the x-axis, 
the y-axis is unique if at all; since the first has a 
negative slope while the second has a positive slope: 
 

x x
M(x,y) 0 N(x,y) 0

y y

dy M dy N
  0;   0

dx M dx N= =
− −= < = >  

 
 Hence there can be at most three equilibria. 

 Since M(0,0) > 0 ≥  M(K,0) there is some 
x̂ (0,K]∈ such that ˆ ˆM(x,0) 0 (x,0)= ⇒  is the E2 
equilibrium with no predators. 
 Next by virtue of the restriction placed on the 
function N(x,y) we note that there is x(0) such that 
N(x(0),0) 0 N(0,0)> ≥ and hence there is 
x [0,x(0)) N(x,0) 0∈ ∋ = . If ˆx x>  then an E3 
equilibrium exists; to see this, note that under this 

condition ˆM(x,0) M(x,0) 0 N(x,0)> = = , while 
ˆ ˆN(x,0) N(x,0) 0 M(x,0)> = = ;  thus from continuity, 

there has to be some ˆx x and x x> >ɶ ɶ  and some 

corresponding y 0>ɶ  such thatM(x, y) N(x, y)=ɶ ɶ ɶ ɶ : the E3 
equilibrium. 
 
Local stability properties of equilibria: We examine 
the local stability of the equilibria E1,E2 and E3 in this 
section. First of all, we need to compute the Jacobian of 
the system (3) given P1 and P2: 
 

x y

x y

M(x,y) xM (x, y) xM (x,y)

yN (x, y) N(x, y) yN (x, y)

+ 
 + 

 

 
Thus at E1: (0,0) the above reduces to: 
 

0

0

+ 
 − 

 

 
 This establishes that at E1, the Jacobian has one 
positive and one negative characteristic root and hence 
the equilibrium is a saddle-point. Next at E2, the 
Jacobian is given by: 
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ˆ0 N(x,0)

− − 
 
 

 

 
 The sign of the term ˆN(x,0)  depends on whether 
x̂ x>  : the condition for the existence of E3  as we had 
shown in the proof of Claim 8. Since by definition, 
N(x,0) 0= , if E3 exists, E2 is a saddle point, since then 
one characteristic root is positive and the other negative; 
whereas if there is no E3 equilibrium, then E2 is locally 
asymptotically stable since both characteristic roots are 
then negative. 
 Whenever E3 exists, the Jacobian evaluated at E3 
has the following sign pattern: 
 

− − 
 + − 

 

 
 Consequently, whenever E3 exists, the Jacobian has 
both roots with real parts negative and the equilibrium 
is locally asymptotically stable. 
 Finally, consider the system (1); we may consider 
this to be a special case of (4) where α = β = 0 . It is 
easy to check that under this restriction, the system (4) 
(or the system (1) (Notice that there has been a change 
in notation from the one used in (1)) has two equilibria. 
E1: (0,0) and c a

E : ,3 d b
 
 
 

 and at E3, the Jacobian has the 

following sign pattern: 
 

0

0

− 
 + 

 

 
 Thus under (1), the characteristic roots are pure 
complex, the real parts being zero. Hence E3 is a center. 
 
Global stability properties: 
Invariant set: For the system (3) we shall refer to a 
solution originating from some point (xO, yO) by the 
notation ϕt(x

O, yO) and our objective here is to tie down 
what happens to this solution as t→∞. We show that 
under our assumptions P1 and P3, there is an invariant 
set Q⊆ℜ+×ℜ+. That is, the solution ϕt(x

O, yO) is defined 
for all (x,y)∈Q and remains within the set Q for all t. 
We do this constructively in the following steps. 
 From P1 and P3, we conclude: M(x,y) = 0, N(x,y) 
= 0 are respectively downward sloping and upward 
rising curves. Also, note that M(0,0) > 0 ≥  M(0,K); 
hence,  y∃ ∈ (0, K such thatM(0,y)  0.=  Note that E2 

exists; denote this bŷ(x,0) . 

 Given y  noted above, P3 guarantees that there is 

x(y)  such that N(x(y), y) 0.=  
 Define  x* = Max[x̂ ,x( y )]; next consider, y* such 
that N(x*, y*) = 0; that this is well defined may be seen 
as follows.  

 Note that * *x x(y) y y= ⇒ = . On the other hand, 
* ˆ ˆx x x(y) N(x,y) 0= > ⇒ > (Since N(.,.) is increasing 

in x and 0)),(( =yyxN ). Thus by P3, there is ˆK(x)  

such that )xK(y   yxN ˆ0),ˆ( ≥∀≤ ; hence there is y* such 

that *ˆN(x,y ) 0=  as claimed. 

 Now consider the rectangle Q made up with the 
points E1: (0,0),(0,y*),(x*, y*), (0, x*). 
 We may now show: 
 
Claim 9: The set Q defined above is invariant. 
 
Proof: Consider any B(x,y) Q∈  where BQ Q⊆  is the  

boundary  of Q  and  consider  the solution (trajectory) 
ϕt(x,y). We  shall  show  that  the trajectory  either  
coincides  with  the boundary or enters Q. 
 E1 is an equilibrium so any trajectory originating 
there stays put; in case * ˆx x= , the point *(x ,0)  is 

another equilibrium, E2 and once again, any trajectory 
originating there stays put; in case * ˆx x(y) x= > , any 

trajectory originating from (x*,0) has y 0,x 0= <ɺ ɺ , 

 Since * ˆM(x ,0) M(x,0) 0< =  and so the trajectory 

coincides with the x-axis, and is directed inside Q along 
the boundary. Notice that any trajectory originating 
from a point on the x-axis is directed along the axis 
towards the equilibrium E2 and hence stays within Q. 
 Consider, next, any point (0,y) with0<y≤y*; the 
trajectory originating from such a point 
hasx 0,y=ɺ ɺ <0sinceN(0,y)<0 and hence the trajectory 
coincides with the y-axis and is directed towards E1. 
 Any trajectory originating from a point of the type 
(x,y*), 0<x≤x* has x 0,y 0< <ɺ ɺ  since M(x,y*)<0, 

N(x,y*)<0 and consequently, the trajectory is directed 
inside Q. Similarly, any trajectory originating from a 
point of the type (x,y*), 0<y≤y* is also directed inside 
Q. This completes the demonstration of our claim. 
 Figure 3A and 3B would clarify the claims made 
above (Although the lines M(x,y) = 0, N(x,y) = 0 have 
been drawn as straight lines they need not be so; it is 
their slopes which are of importance). 
 
General conclusion: By appealing to the Poincaré-
Bendixson Theorem, the following conclusions may be 
noted (The investigations of Kolmogorov[12], as reported 
in Freedman[13], lead to Remarks 1-3 but it should be 
pointed out that the conditions P1 and P2, which are the 
basic conditions employed in this study are weaker than 
the conditions employed in Kolmogorov’s discussion 
and the proof provided in Freedman[13]). 
 
Remark 1: For any (x,y)∈ℜ+× ℜ+ the trajectory ϕt(x,y) 
must enter Q and either approaches equilibrium or there 
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is a limit cycle in Q. Any limit cycle, if there is one, 
must surround an equilibrium. 
 
Remark 2: Further, when there is no E3, as in Fig. 
3A, the triangular region bounded by the axes and 
the curve M(x,y) = 0 is an invariant subset of Q: 
once entered, it cannot be left. In such a situation, 
there can be no limit cycle and hence any trajectory 
must approach the equilibrium E2. Consequently, 
ultimately, all predators disappear.  
 
Remark 3: On the other hand, when we have an 
equilibrium such as E3 as in Fig. 3B, there appear to be 
only two possibilities for any trajectory: beginning from 
a strictly positive configuration: either we have 
convergence to E3 or a limit cycle around E3. Neither 
E1nor E2can be approached.  
 However, given P3, we can go further. Recall that 
under this restriction, we have first of all that Mx<0, 
Ny<0 over the domain of discussion. Then consider the 

function 
1

(x, y)
x.y

θ =  in the positive quadrant and 

consider the expression: 
 

x y

( (x, y).xM(x, y)) ( (x, y).yN(x, y))

x y
1 1

M (x, y) N (x, y) 0
y x

∂ θ ∂ θ+
∂ ∂

= + <
 

 
 Over the entire positive quadrant: Hence by 
Dulac's criterion (Dulac’s Criterion: If there exists a 
function θ(x,y) continuously differentiable on the 
region S such that the expression: 

( (x,y).xM(x,y)) ( (x,y).yN(x,y))
x y

∂ θ ∂ θ+∂ ∂ is not 

identically zero on S, and is of constant sign, then there 
can be no closed orbits of the system in S. Notice that 
the requirement is that the above expression is ≤or≥0 
but not 0 everywhere.), there can be no cycles in the 
positive quadrant. 
 Thus when there is no equilibrium with ‘Both 
Species’ present, all trajectories converge to the ‘No 
Predator’ equilibrium; if equilibrium with ‘Both 
Species’ present exists, we will have convergence to 
this equilibrium. To apply Dulac's criterion, it may be 
recalled that we do not need the strict signs of the 
partial derivatives Mx, Ny; the weak signs admitted 
under the restriction P2 are sufficient together with a 
proviso that they are not identically zero. Consequently, 
if we are interested in exhibiting cyclical behavior of 
any kind, we must have some variation in the sign of 
Mx, Ny. In particular, we may state (There is thus no 
possibility of cyclic orbits under the (Kolmogorov[12] or 
Freedman[13] assumptions):  

 
 
Fig. 3A: The Invariant Set When there is no E3 
 

 
 
Fig. 3B: The Invariant Set when there is E3 
 
Claim 10: A necessary conditions for the existence of 
periodic or cyclical trajectories to (3) is that xMx + yNy  
change signs on the positive orthant. 
 It should also be clear from our discussion that the 
restriction P3 is not really essential in its entirety, for 
our conclusions to follow: The only use made of P3 (ii), 
(iii) was to demonstrate that trajectories remain within 
some bounded region. We may note this for future 
reference thus: 
  
Claim 11: Under P1 and P3(i) if the solutions to (3) 
remain bounded and if either Mx or Ny is not identically 
zero, then there can be no cyclical or periodic trajectory.
 A final appeal to the Poincaré-Bendixson Theorem, 
allows us to note the following set of sufficient 
conditions for the existence of cyclical behavior:  
 
Claim 12: If any solution to (3) remain bounded, ‘Both 
Species’ present Equilibrium E3 exists and 
ˆ ˆ ˆ ˆ ˆ ˆxM (x,y) yN (x,y) 0x y+ ≥ , where all terms are 

evaluated at E3, then the solution to (3) would exhibit 
cyclical behavior i.e., either the solution is a closed 
orbit or there is a limit cycle. 
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 We shall use the above claims to provide an 
example of a Predator-Prey Model with robust cyclical 
behavior later on. First we show how our method 
allows us to obtain results which are a lot more general 
than the existing ones. 
 
Applications 
Stability in a Goodwin-type growth model 
The Goodwin growth model: The Goodwin[4] 
contribution was perhaps one of the more influential 
studies on growth theory. The model is based on the 
following assumptions: 
 
• Steady disembodied technical progress 
• Steady growth in labor force 
• Only two factors of production, labor and `capital' 
• All quantities are real and net 
• All wages are consumed and all profits are saved 
• A constant capital output ratio 
• A real wage rate which rises in the neighborhood 

of full employment 
 
 The following notation is used: ‘q’ denotes output; 
‘k’ is capital; ‘w’ is the wage rate; α = αOeαt is labor 
productivity growth, α is a constant as specified by (i); 
the constant capital-output ratio is σ ; u, the share of 
workers in total product = w/a; naturally the share of 
the capitalists' is 1-w/a; investment is given by 

k (1 w / a)q= −ɺ ; ℓ, employment is then q/a; labor n at 

time t is given by nOeβt where β is constant. The 
employment ratio is given by v = ℓ/n. Finally (vii) is 
captured by the equation Eq. (6):  
 
w

f (v)  v
w

= = −γ + ρ
ɺ

 (6) 

 
 Goodwin pointed out, in this set-up, that, first of all, 

/ (1 w / a) /= − σ − αɺℓ ℓ so that Eq. (7): 

 
v 1 u

( )
v

−= − α + β
σ

ɺ
 (7) 

 
 And further using the assumption contained in (6), 
we have Eq. (8): 
 
u

( )  v
u

= − γ + α + ρɺ
 (8) 

 
 It should be clear that the system of equations 
made up of (7) and (8) may be written as Eq. (9):  

1 uv v{ ( )}

u u{ ( )  v}

 
   
   

  
 

− − α + β
= σ

− γ + α + ρ

ɺ

ɺ
 (9) 

 
 These equations constitute a Lotka Volterra 
system of the type we analyzed above. Consequently, 
for any arbitrary initial point (vO, uO)>(0,0), the 
above system of equations generates a closed orbit 
around the NTE. The situation depicted in Fig. 1 
applies and so does the analysis. 
 
A modification: Before passing on to other matters, it 
should be pointed out that possibilities of convergence 
in Goodwin type models have been noted (Mukherji[8] 
contains a detailed analysis of perturbation exercises 
within this model). An exercise due to Flaschel[15] may 
be reported to indicate the benefits obtained from the 
approach adopted in the present paper. 
 Flaschel considers the following variation to the 
Goodwin basic model: 
 

w
f (v), f (v) 0

w
′+ ηπ = >

ɺ
 

 
where, π = g(u), g’(u)>0, g(0) = 0 to denote that the rate 
of inflation π is estimated, as a constant mark-up over 
labor unit-costs u; in addition, assuming a constant 
output-capital ratio as before, we have: 
 

K
s(u)Y / K s(u) / ,s (u) 0

K
′= = σ <

ɺ

 

 
 Thus, in contrast to what we have described as the 
original Goodwin formulation, the Phillips curve (6) 
has been adjusted for “money illusion” so that when 
η>0(<0) workers receive a lower (respectively, higher) 
real wage than they bargained for; and the investment or 
accumulation equation is a straightforward generalization 
from the constant savings rate assumption. Combining 
these, we have the following system Eq. (10): 
 

v v{s(u) / ( )}

u u{f (v) g(u)}

  
    

   

σ − α + β
=

− α − η
ɺ

ɺ
 (10) 

 
 The difference between (9) and the above is easy to 
spot: in fact if we were to replace the functions g(.), s(.) by 
linear affine approximations, then (10) could be seen as a 
perturbation of the system (9) for non-zero values of η; in 
this sense, the relationship is similar to the one between (1) 
and (2) except that in the present case, it is the rate of 
growth of the ‘predators’ which have been perturbed; 
hence we expect convergence once again (In this sense, 
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the Flaschel[15] enquiry is similar to the one carried out in 
Mukherji[8]; however, the results obtained are different). 
 For the system (10), the following result is claimed 
by Flaschel[15]:  
  Assume that the Jacobian J = (Jik) of the system 
(10) satisfies the following: 
 
• Trace J < 0, 
• Det J > 0 and  
• J12. J21 ≠ 0 
 
 Everywhere on 2

+ℜ , then the equilibrium u*,v* is 

asymptotically stable in the large. 
 Now J is given by the following matrix: 
 

s(u) / ( ) vs (u) /

uf (v) f (v) ( )

′σ − β + α σ 
 ′ − α + η 

 

 
 It should be easy to see that at the equilibrium, 
all the conditions mentioned above are satisfied; 
notice too that the only condition which is easily 
seen to hold all over the non-negative orthant is the 
requirement on the off-diagonal terms, given the sign 
restrictions on the derivatives of the functions 
f(.),s(.); it is not at all clear how the other two 
requirements on the trace and the determinant are 
going to be met on the entire non-negative orthant 
and hence these are demanding restrictions. 
 However without imposing any of the above 
requirements (Notice too that the conclusions do not 
depend upon the form of the functions f(v), s(u),g(u); 
the crucial aspect is the fact that g’(u) is of constant 
sign. Flaschel[15] proceeds some what differently by 
transforming variables x = lnu, y = lnv; on p. 65, 
middle of the page, the Jacobian for the transformed 
equations are considered and it is noted that “.. it fulfills 
the same conditions as were postulated with regard to 
J.” The ‘postulated’ conditions are redundant even there 
since the transformed Jacobian has the sign pattern 

0

 − +
 
 − 

 which satisfies all the requirements of olech’s 

theorem.), notice that one may claim:  
 
Claim 13: For the system (10), there can be no cyclical 
orbits in the positive orthant, given the sign restrictions 
on the derivatives of the functions g.  
 
Proof: Consider the function uvuv ./1),( =θ  and then 

consider: 
 

{ (v,u).v(s(u) / ( ))}

v
{ (v,u)u(f (v) g(u))}

g (u)
u

∂ θ σ − α + β
∂

∂ θ − α − η ′+ = −η
∂

 

 This has the same sign (non-zero) on the positive 
quadrant: hence by Dulac’s Criterion, there can be no 
cycles in the positive orthant. 
 Thus for convergence to equilibrium from any 
initial positive configuration, one may note that 
additionally we need to show that the solution is 
bounded and one may use the Poincaré-Bendixson 
Theorem to complete the demonstration. It may be 
recalled that the variables u,v are, by definition, 
fractions and cannot exceed unity; consequently the 
bounded nature of the solution should follow from the 
model itself. Notice too that it is the parameter η which 
eliminates cycles as possible trajectories. 
 
The Easter Island mystery: An interesting application 
of the Predator Prey Model is the paper by Brander and 
Taylor[9]. The problem they seek to analyze is the 
mystery of the island in the Pacific called Easter Island. 
Briefly (The interested reader is referred to Brander and 
Taylor[9] and references mentioned therein for details), 
the mystery is the following: when contact with 
European Civilization was established in the eighteenth 
century, it was also realized that the island must have 
been not only richer but also more populous in the past. 
This inference was based on the existence of huge 
statues carved from volcanic stones; some of the larger 
ones which could be moved weighed as much as 80 
tons while the largest, lying unfinished in a quarry 
weighed as much as 270 tons. The puzzling aspect was 
that the Stone Age civilization found in the island in 
1722 did not have the skills required for either 
producing these statues or moving them over any 
substantial distances. And the population seemed to be 
inadequate for moving the larger statues from the single 
quarry where they must have been mined: thus they 
lacked the brute force as well. The people of Easter 
Island, at that point of time, had no clue how the statues 
had been moved. The island has been extensively 
studied and analyzed and while there were no trees 
capable of making tools in 1722, subsequent geological 
studies established that the island must have been 
inhabited by Polynesians as early as 400 AD when 
there were large palm trees and extensive forest cover. 
These must have been cut down at the time of initial 
settlement to build boats and catch fish and this has 
been supported by the archaeological finding of fish 
bones. The population thrived, and may have found 
time for leisure activities which may have involved 
carving and moving statues. 
 Based on this hypothesis, a model is developed 
where the populace is treated as the predator and the 
resource base as the prey. Initially, the population was 
small and the resource base was plentiful and 
consequently, the population thrived; over time the 
resource base got depleted to the point that it could not 
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regenerate itself and that led to the decline in the 
population. More specifically, by 900 AD a substantial 
reduction in forests had taken place; the statues were 
carved between 1100 and 1500; by about 1400, the 
forest cover was almost completely depleted. 
Apparently with the rapid depletion of the resource base, 
the diet had also changed (less fish) with lower protein 
intake; soil erosion had taken place due to the same 
reason and this had contributed to a reduction in water 
retention which in turn had led to reducing productivity 
of land. Population peaked at around 1400 AD and then 
started to decline. The Europeans came in some three 
hundred years later and found the island impoverished 
and the population scarce. 
 These preliminary comments are insufficient to 
provide a complete picture but our purpose is much 
more limited: we wish to analyze the equations 
developed to explain this phenomenon. The following 
two equations are derived Eq. (11 and 12): 
 

S
S S{r(1 ) L}

K
= − − αβɺ  (11) 

 
And: 
 
L L{b d S}= − + φαβɺ  (12) 
 
 In these equations, S(t) stands for the resource 
stock at t and it grows at a natural logistic r rate minus 
the amount harvested H(t); assuming a Ricardian 
production set-up, this is seen to be α β L(t)S(t) where 
L(t) stands for the population at time t; the population 
growth rate is determined through the net birth rate b-d 
plus an allowance made for the fertility variation due to 
consumption per-capita of the resource φH(t)/L(t) = 
φαβS(t): this is the Malthusian component. 
 The system made up of (11) and (12) is of course a 
Lotka Volterra system, with L as the predator and S as 
the prey; it is a special case of the system (3) with M = 
{r (1-x/K) α β y}, N = { b-d +φαβ x} where we have 
used x for the prey, here the resource stock (S) and y 
for the predator which is the population L; given that 
assumptions P1 and P2, hold, (it is given that b-d < 0: 
that is, if there is no forest resource, the population will 
decline over time. Recall also that P3 was not really 
necessary and in this case, apart from the fact that Nv = 
0 all other restrictions in P3 do in fact hold. 
 In the circumstances: there can be no cyclical 
behavior; the only cyclical behavior which may be 
exhibited in this set-up is during the approach to an E3 
equilibrium, the spiral around the equilibrium with the 
fluctuations dying out over time. It turns out that our 
Fig. 2 shows precisely this kind of behavior. This 
however is not actual cyclic or periodic behavior. What 
then may we conclude from this very interesting 
exercise? We note as follows: 

 The assumptions relating to Ricardo or Malthus are 
not crucial for any of the conclusion drawn. Under very 
general conditions (P1 and P2 hold and solutions be 
bounded are sufficient for the purpose), it may be 
shown that our conclusions hold viz., that either there is 
convergence to a no-predator equilibrium E2 if there is 
no equilibrium with both species present or there is 
convergence to the equilibrium with both species 
present, E3, whenever it exists. In any case, there can be 
no periodic or cyclical behavior.  
 If the initial position is one where the predators are 
small in number and the prey population is small, the 
passage to either E2 or E3 type equilibrium, may involve 
first rapid growth in the population of the predators 
during which the prey population shrinks and then a fall 
in the population of predators. In fact as a reference to 
Fig. 3B will indicate, E2 is a saddle point whenever E3 
exists; note also that the predators L are measured along 
the vertical axis while the prey S is measured along the 
horizontal axis. So if the initial point is close to the 
horizontal axes, with SO less than at E2 then the path will 
veer away from the horizontal axis, given the equilibrium 
and whose only line of approach is along the horizontal 
axes. In other words, there would be growth in the 
population of L and S too initially, as documented in the 
case of Easter Island (The problem, if any, with the 
Brander and Taylor[9] contribution lies in their statement 
of proposition 4 (iii) and (iv); the statement seems to 
indicate that whenever the characteristic roots are 
imaginary (condition (14) holds), the trajectory will 
necessarily be as in their Fig. 2 (p. 126); that this is one 
among the many possible alternatives may be noted from 
their paragraph just preceding proposition 5 on p. 127). 
In fact, the solution will cross the M(x,y) = 0 line and it 
is possible that along the solution, a level of population is 
reached which is greater than the maximum associated 
with E3, which is the ‘overshooting’ that Brander and 
Taylor[9] refer to. Notice that this is fully captured in the 
general formulation. 
 The special nature of the resource in Easter Island 
is responsible for the other element of the mystery i.e., 
why this pattern of development was recorded in Easter 
Island only and not in the other islands of the Pacific. 
Apparently the palm trees of Easter Island were ones 
with much slower rates of growth than elsewhere. 
Positive growth in the horizontal direction will become 
rather sluggish as a result. As a result, one may expect 
the M(x, y) = 0 line to shift inwards and the equilibrium 
would involve lower value for both the variables: for 
instance, this is what happens for the functional forms 
assumed in Brander and Taylor[9]. 
 The authors seem to reject the simple explanation 
for the “mystery” of Easter Island: the population so 
degraded the resource base that it became unable to 
sustain the population. The population was, to begin 
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with, very small, reached a height of between 10,000 to 
15,000 about 1400 AD and the period 1400-1500 AD 
saw falling food consumption accompanied with 
decreasing statue building activity. This fall in the 
population is seen as “overshooting” what was the 
sustainable population. This “overshooting” is however 
during a passage to some equilibrium. Whenever there 
is convergence, as in the present set-up, a trajectory 
becomes indistinguishable from the limit after a certain 
point of time (Hirsch and Smale[14] p. 275, second 
paragraph  after the diagram). Finally, as a reference to 
Fig. 3B would make clear, the line M(x, y) = 0 is 
downward sloping in the x-y plane with the prey x on 
the x-axes. Consequently, the sustainable population of 
preys at E3, is less than the sustainable population of 
preys when there is no predator at E2; now the initial 
point of the entire process is likely to be somewhere in 
between, with a low population of predators: 
consequently the line M(x, y) = 0 is breached and the 
population of predators increase; this increase could 
take them beyond the level at E3 only to crash 
eventually since the preys are unable to keep up with its 
rate of depletion. As we have argued above, the simple 
explanation together with the special feature of the 
resource base in Easter Island, even within the context 
of a general predator-prey model, appears to be capable 
of explaining ‘observed’ facts. 
 
An example of robust cyclical behavior: We provide 
a numerical example where the results of Claim 12 are 
satisfied. As will become apparent, we use our 
experience from the exercises of the last sections to 
construct such an example. 
 We consider a variation in our assumptions P2 
which allows us to consider the rates of growth of the 
prey and predators as follows Eq. (13): 
 

x y bx
x x{r(1 ) } and y y{ d}

K x h x h
= − − β = −

+ +
ɺ ɺ  (13) 

 
where, r, K, β,h and d are all positive constants. 
 It may be noted that there is a similarity with the 
Brander-Taylor[9] formulation: the growth of the prey in 
isolation follows a logistic rule. In the presence of the 
predator, the former has to be adjusted by the amount 
harvested or killed, which is assumed to be proportional 
to the population of the predators. The difference lies in 
this factor of proportionality. 
 In the Brander-Taylor[9] formulation, this rate was 
also proportional to the population of the predators but 
the factor was increasing without bounds with the 
population of the prey: it may be recalled that this term 
was α β L S; Where L represented the predator and S 
the prey populations, respectively. On the other hand, 

now, the corresponding term is 
x

y
x h

β
+

 with x, y 

denoting populations of prey and predator respectively. 
Now the factor of proportionality does not increase 
without bounds with the population of the preys; there is 
a clear upper bound, since the factor x/(x + h) approaches 
unity as the population of preys become infinite. 
 The population of the predators now takes into 
account the birth-rate, b being the natural birth-rate 
with plentiful prey and d is the death-rate among the 
predators; but the birth rate is affected when prey is not 
plentiful; in fact, the same type of argument was used in 
the Brander-Taylor[9] formulation; however the effect is 
through a decline in the net birth-rate. 
 Rewriting the system (13) as: 
x xM(x,y), y yN(x, y)= =ɺ ɺ  we note that now M(x,y) = 
r(1-/k)-βy/(x + h) and N(N,y) = bx/(x + h)-d so that My 
<0,Nx>0; however Mx could be either positive or 
negative. This is how P2 has been modified (For the 
system (3), Mx<0 and hence allowed the use of Dulac’s 
criterion for ruling out the presence of cycles while 
admitting “social phenomenon”). The non-trivial 
equilibrium for this system is given by: 
 

*
* * *dh x

x , y r 1 (x h) /
b d K

 
= = − + β −  

 

 
 Thus for a meaningful non-trivial equilibrium, we 
must have b > d and in addition, we must have K(b - 
d)> (b + d)h and we take it that this is so. At this 
equilibrium the Jacobian of the system is given by: 
 

* * * * * *
x y

* * *
x

x M (x ,y ) x M (x , y )

y N (x , y ) 0

 
 
 

 

 
 Notice that given the signs indicated earlier, the 
determinant is positive while the trace is of ambiguous 
sign. Notice too that the trace is given by: 
 

* * 2
* *

* 2

K y (x h)
x M (.) xx K(x h)

β − +=
+

 

 
 After some simplification, it may be shown that the 
sign of the trace depends on the sign of K-h2x

* and 
hence at the nontrivial equilibrium, either both of the 
characteristic roots have their real parts positive; or 
both have their real parts negative. Consider what 
happens when the trace happens to be positive: Notice 
that x* is independent of the parameter K so, keeping all 
the other parameters fixed, we need to choose a large 
enough value for K for this to happen. Clearly then, the 
non-trivial equilibrium is a source. 
 Consider then, the case when K>h2x

*; in other words, 
K(b-d)>(b + d)h. The Poincaré-Bendixson Theorem, if 
applicable, would imply the existence of a closed orbit. 
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Fig. 4: Robust cyclic behavior 
 
We need to check whether any equilibrium can be 
approached and then check whether trajectories are 
bounded for this purpose. Notice that the only other 
equilibria for the system (13) are given by (0,0) and 
(K,0); computation of characteristic roots of the 
Jacobian of the system at these equilibria implies that 
(0,0) is a saddle-point and if b + d > 1, then so is (K,0). 
The following may be checked: 
 If the initial point (xO, yO)> (0, 0) none of these 
equilibria can be approached. Trajectories remain bounded.
 Consequently the only possibility is a limit cycle 
around the non-trivial equilibrium. Notice also that small 
perturbation of the system is unable to dislodge the 
cyclical behavior of trajectories. Thus to clinch matters 
we need to establish the validity of the items noted above. 
 For the first, it is best to consult the following figure, 
where we have considered the phase plane of the system 
(13), for appropriate values of the various parameters: r = 
10, β = 20, b = 4, d = 2, h = 4 with appropriate units (All 
but the last are measured in number per year. The last is a 
stock and is measured in numbers, say millions). Notice 
that K has been left unspecified.  
The case we are interested in, consists of requiring K > 12 
(this would make the interior equilibrium unstable) (K = 
12 is a point of bifurcation at which point, the non-trivial 
equilibrium loses stability and an attracting closed orbit 
emerges); the situation for K = 16 is captured below. 
 While the above is a computer generated figure and 
cannot be taken for an analytical proof, we note that the 
axes x = 0, y = 0 are trajectories and cannot be crossed; 
and the only trajectories which approach the saddle-
point equilibria are these trajectories. The non-trivial 
equilibrium being a source cannot be approached. 
Hence no trajectory, with a strictly positive initial point, 
can approach equilibrium, as claimed. 
 To show that any trajectory beginning from an 
initial positive configuration remains bounded, notice 
the following: denoting the solution to (13) from an 
arbitrary z° = (x°,y°)>(0,0) by ϕt (z°) = (ϕtx (z°),ϕty 
(z°)); note thatϕtx (z°)<K∀t>0since ϕtx (z°) = K⇒x = 
ϕtx (z°)<0; thus unbounded behavior, if possible, may 
arise only if ϕty (z°)→∞; if this were to be the case, 

x → −∞ɺ  and for all t > T, say, x < −δɺ for some δ>0. 
This contradicts the fact that ϕtx (z°)>0∀t. Thus the 
solution ϕt (z°) remains within a bounded region of the 
positive quadrant. Thus the ω-limit set is non-empty 
and does not contain any equilibrium when K(b-d) > 
(b+d) h; an appeal to Poincaré-Bendixson Theorem 
establishes that there must be a limit cycle. 
 That this is an example of robust cyclical behavior 
may be gauged from the fact that small perturbation in 
parameter values would maintain the local properties of 
the three equilibria (Notice too that the bounded nature 
of trajectories follow regardless of parameter values.) 
and also maintain the crucial inequality K(b-d) > (b+d) 
h. Hence the limiting periodic behavior would also be 
maintained. In fact, the diagram constructed shows that 
even with initial points being different, the solution 
settles down into a closed orbit (the limit cycle). 
 

CONCLUSION 
 
 The Predator-Prey Models thus provide a framework, 
where a wide variety of results are possible: not only one 
may get convergence as in the set-up described by 
assumptions P1-P3, but also one may obtain periodic 
behavior if the equations of motion are described by (1) 
or by equations such as the ones in the last section. The 
current paper shows what is needed to get a proper 
periodic or persistent cyclic behavior. First of all a 
Predator-Prey model with two species by definition 
would require that My<0 and Nx>0 where x,y are the 
population of the preys and predators respectively and 
M(.), N(.) respectively define their rates of growth. The 
differences in conclusions arise from what we assume 
about Mx, Ny i.e., how the rates of population growth are 
affected by their own population levels, other things 
being held constant. In fact, we have shown how crucial 
the role of the so-called ‘social phenomenon’ is for the 
dynamic conclusions. To distinguish our conclusions 
from the conclusions in Kolmogorov[12] or as reported 
in Freedman[13], our method allows us to conclude that 
it is this aspect which is crucial. In addition, it should 
be pointed out that the fact global stability results for 
special forms of predator-prey models have been 
appearing even recently[11], suggest that there are still 
matters to be investigated. 
 To remind readers: the simple model (1) ensures 
that Mx = Ny = 0; it may be shown that this is enough to 
generate the closed orbit in the original Predator-Prey 
Model i.e., the linearity assumed in the rates of growth 
in (1) are really not required. If we allow these partial 
derivatives viz., Mx, Ny to be negative (This forces 
“social phenomenon” to be always negative. As we 
have discussed above, to rule out periodic behavior, it is 
enough if these partial derivatives have the same weak 
signs and be not identically zero.), we are in the 
situation described by assumptions P1 and P2 and the 
earlier closed orbits disappear. This result is obtained 
under general conditions. 
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 If one allows for changes in the signs of these 
particular partial derivatives to vary in sign over the 
domain under consideration only then, may one hope to 
obtain a description of persistent cyclic behavior. It should 
be noted that this is not sufficient, since even with 
variation in the sign of these partial derivatives, one may 
get convergence under some conditions, as noted by Hsu 
and Huang[11]. They study the following system: 
 

y y
x x g(x) p(x)  and y y

x x
   = − = δ − β   
   

ɺ ɺ  

 
 The functions g(x),p(x) satisfy: 
 
g(1) 0,g (x) 0 x 0, p(0) 0,p (x) 0 x 0′ ′= < ∀ > = > ∀ >  
 
 The above assumptions serve to keep the solution 
in a bounded region: 0<x<1, 0<y<δ/β; the claim is that 
if, in addition, one has: 
  

* * *xg(x)
(x x ) y 0,0 x 1,x x

p(x)

 
− − < < < ≠ 

 
 

 
 Then the equilibrium (x* , y* ) is globally stable. 
Notice that in this case, while our crucial P1 holds, 
P2 does not, and if the additional requirement stated 
above is met, then global stability of the interior 
equilibrium is claimed. 
 Our example provides a description of a situation 
where we allow social phenomenon but do not restrict 
that social interaction to be always negative; this 
establishes a robust cyclical behavior. 
 Important implications of our results are exhibited 
by the considered applications: in the case of the 
Goodwin type models analyzed by Flaschel[15]: It is the 
money illusion term which destroys periodic behavior; 
none of the other assumptions made in that paper is 
really required; similarly for the Brander-Taylor[9] 
contribution, the specificities imposed through the 
Ricardo-Malthus assumptions are not necessary as well. 
The simple setting for the Easter Island, with the 
resource base as prey and the population as predator, 
and ‘social phenomenon’ exhibited in the growth rate of 
the prey, together with the fact that the resource base in 
Easter Island had special characteristics, provide an 
explanation for the Easter Island Mystery. 
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