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On Stability in Multiobjective Integer Linear Progr amming: A Stochastic Approach
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Abstract: In this study we consider a multiobjective inte@iaear stochastic programming problem
with individual chance constraints. We assume thate is randomness in the right-hand sides of the
constraints only and that the random variablesharenally distributed. Some stability notions foicku
problem are characterized. An auxiliary problerdigcussed and an algorithm as well as an illustati
example is presented.
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INTRODUCTION Here x is the vector of integer decision variables
and F (x) is a vector of k-linear real-valued olijex
Decision problems of stochastic or probabilisticfunctions to be maximized. Furthermore, P means
optimization arise when certain coefficients of anprobability ande; is a specified probability value. This
optimization model are not fixed or known but aremeans that the linear constraints may be violatedes
instead, to some extent, stochastic (or random off the time and at most 100 (&) % of the time. For
probabilistic) quantities. the sake of simplicity, we assume that the random
In recent years methods of multiobjective Parametersib(i=1,2,...m) IS distributed
stochastic optimization have become increasinghyormally with known means E{pand variances Var
important in scientifically based decision-making 1bi} and independently of each other.
involved in practical problems arising in economics L ) . ) i
industry, health care, transportation, agriculture,Pefinition 1: A point x'OX s said to be an the
military purposes and technology. We refer theproblemnt solution for problem (CHMOILP) if there
Stochastic programming Web Site (2d52‘pr links to  does not exist anotherdX such thatF(x) = F(x') and
software as well as test problem collections forg(y)zF(x) with:
stochastic programming. In addition, we should poin
the reader to an extensive list of papers maintaime oo _
Maarten van der Vierk at the Web Site: P{ 90)=2a%<b}zq =12...m
http://mally.eco.rug.nl /biblio/ SP list.html. =
In literature there are many papers that deal with  The basic idea in treating problem (CHMOILP) is
stability of solutions of stochastic multiobjective to convert the probabilistic nature of this probleno a
optimization problems. Among the many suggesteddeterministic form. Here, the idea of employing a

approaches for treating stability for these protsi&th deterministic version will be illustrated by usirige
interesting technique of chance-constrained
PROBLEM FORMULATION AND programmind”. In this case, the set of constraints X of
SOLUTION CONCEPT the problem (CHMOILP) can be rewritten in the

deterministic form as:
The chance-constrained multiobjective integer

linear programming problem with random parameters XOR" . <EbY+K . Nardbt.
in the right-hand side of the constraints can beestas X' = | jzzl:a")g 1K il ,

follows: i=1,2,....,m,x2 0andinteger5 1,2,/n
(CHMOILP):  max F(x), whereK, is the standard normal value such that
;S(El;ied o P(K,)=1-a;; and ®(a) represents the “cumulative
where distribution  function” of the standard normal
n distribution evaluated at a. Thus, the problem
| xOR"P{ g(xF>. g xs b}zq , (CHMOILP) can be understood as the following
= =

deterministic version of a multi objective intederear

programming problem:
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i =1,2,...mx= 0 andintegerg 1,2,.|r
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(MOILP): max [fi(x), f2(x),...., f(X)], C =E{b}+K . Narb}, (i 4,2,...m).
subject to ‘
xOX'. In what follows, definitions of some basic stalili

Now it can be observed, from the nature of thenotions are given for the relaxed problegﬁ(zi—) above.

; . We shall be essentially concerned with three basic
roblem (MOILP) above, that a suitable secularozati . . "y
P ( ) notions: the set of feasible parameters; the soiyabet

technique for ”eg]“”g such problems is to uselihe .4 e siapility set of the first kind (SSK1). The
?;E)S\,t,riﬁlmi:t]eetg? |iheF§: thr'g' ?:;fﬁfﬁ W?og?enéldvsirtr:hs quahta}tlve and quantitative analysis of thesec_mstlhas

: g Integ ar prog gp been introduced in details by Osi&h! for different
single-objective function as: classes of parametric optimization problems. Moeeov
P():  max£(x) stability resul'gs.f_or such .p.roblems have been_éelr!v
SSlJb'éct o ' The feasibility condition for problems®) is given

J in the following.

X() ={ x OR"|f,(x) 2 €,,r OK o{s}, xO X'},

The Set of Feasible Parameters:
Where §IK={1, 2, ..., k} which can be taken arbitrary. Definition 2: The set of feasible parameters of problem
It should be stated here that an efficient sotui®  Ps(g), which is denoted by A, is defined by:
for the problem (CHMOILP) can be found by solving
the scalar problem¢®s) and this can be done when the A
minimum allowable levelse(, €, ..., €s.1, €s+1, «-+y &) -
for the (k-1) objectives (f fy..., fsy, fsup..., f) are  1he Solvability Set: N ,
determined in the feasible region of solutions)X( Definition 3: The solvability set of problem ),
It is clear fronf! that a systematic variation efs which is denoted by B, is defined by:
will yield a set of efficient solutions. On the etthand,
the resulting scalar problem @) can be solved easily
at a certain parameter=¢* using the branch-and Tne stapility sets of the first kind:
bound method. If x*0 X (¢*) is a unique optimal  pefinition 4: Suppose that’ OB with a corresponding
integer solution of problemsKe*), then x* becomes an  gptimal integer solution x*, then the stability stthe
efficient solution to the problem (CHMOILP) with & fist kind of problem E() corresponding to x*, which
probability levela; , (i=1, 2,...m). is denoted by S(x*), is defined by:

={e DR X () 2}

B ={ € IZIA\ ProblemP ¢ )has an optimal integer solut}io

A PARAMETRIC STUDY ON PROBLEM

o X * remains optimal intege
(CHMOILP) S(x1)=1e0B

solution of problempPg )

Now, before we go further, we can rewrite problemutilization of the Kuhn-Tucker Necessary
P, (€) in the following scalar relaxed subproblem which Optimality Conditions for P¢(g): Now, given an

may occur in the branch-and-bound process as: optimal point x*, which may be found as described
earlier, the question is: For what values of theteee
Ps(g): max £(X), the Kuhn-Tucker conditions for the subproblem(8)
Subject to are satisfied? _
xOXs (€), In _the foII_o_Wlng, the Kuh_n-Tucker necessary
optimality conditions corresponding to problem (B)
Where: will have the form:
xOR"| fr(x)zi,,rIZIK -{s}, at;(:) +%u, afas)(:) —;5, a%;EiX) ~U,+v,=0, (=1,2,....,n
_ g(x)=>a%<G,i=12,..,m f.(x)2¢,, rOK —fs},
X(e)= = , g, (x)<GC, (i=1,2,...m),
y,<x;<B, ,j0Jd0 { 1,2,.n} X, 2B, i01og2,...,n},
and x integer. X <Y)h i030%.2,....n}
i (x) +e]=0,  rOK s},
3[g,(x) -G1=0, (i=1,2,..m), *
Where the constraing; < x;<p; j0JO { 1,2,.n} is an u[-x; +B] =0, 0 ofL2,..n},
o, . .. . v.[x; -y] =0, j0J04,2,...,n},
additional constraint on the decision variablend that pJZ(J), ! (K-
has been added to the set of constraints of proBlem 6,’2 0, (i=12,..m),
(¢) for obtaining its optimal integer solution x* ke u;20, oo, n},
branch-and-bound algorittth v,20, j010¢,2,....n},

In addition, it is supposed that:
155¢
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Where 0J0{1,2,... n}, InJ =® and all the relations Step 12Define

of system (*) above are evaluated at the optimeiger T,(x*) {eR* Y g -A<e <M ,r K +s}}, wher
solution x*. The variablest, &, y, v are the long- e A is any small prespecfied positive real
ranging multipliers. number.

The first and last four relations of the systerh (* Step 13Determine O-T,(x*) . If O-T,(x*) =@, stop.
above represent a Polytope id uv -space for which Otherwise, go to step 14
its vertices can be determined using any algorithm ] ' - y
based upon the simplex metf8d According to SteP 14.Ch0095e anothee, =&00-T,(x) and go to
whether any of the variables, rOK-{s}, &, (i=1,2,... step 9.

m), y, (OI) an v, j0J) is 22?0 or pc{>s%tive, t(hen the set The above algorithm terminates.v_vhen the range of
of parameters's for which the Kuhn-Tucker necessary IEr:Z gj(l)l(z)eig(hail\tllesrt]egé.Then, the stability set of first
optimality conditions are utilized will be deterreth 9 '
This set is denoted by T (x*). k-1

SK)=UT ().
Determination of the Set T (x*): Now, we propose an =

algorithm in a series of steps to find the setaxfgiblec AN ILLUSTRATIVE EXAMPLE
which will be denoted by T (x*). For the set T (x?he

point x rerrlams ellfluent for all values of theoter . the developmental theory and the proposed algorithm
Clearly, T(x*)1 S(x*) . . ... The problem under consideration is the following
The suggested algorithm can be summarized in thgjcriterion integer linear programming  problem
following manner: involving random parameters in the right-hand sifle
) ) the constraints (CHBILP).

Step 1: Determine the means Ejftand Var{b} (i =1,  (CHBILP): max F(x) = [f(x), f(X)],

2,...m). , Subject to
Step 2: Convert the original set of constraints &  P{x,+x, < b} > 0.90, P{-x+%, < by} > 0.95, P{3%+x,

problem (CHMOILP) into the equivalent set of < p,}>0.90, %, x,> 0 and integers.

constraints X. Where
Step 3: Formulate the deterministic multiobjective f,(x) = 2x + X, f2(X) = X + 2%.

integer linear problem (MOILP) corresponding  Suppose that;b(i =1,2,3) is normally distributed

Here, we provide a numerical example to clarify

to the problem (CHMOILP). random parameters with the following means and
Step 4: Formulate the integer linear problem with a variances.

single-objective function &). E{b} = 1, E{by} = 3, E{bg} = 9, Var{b}=25,
Step 5: Solve k-individual integer linear problem, B Var{b,}=4, Var{bs}=4,

=1,2,...kK) where R max {(x), (r=1,2,...k), From standard normal tables, we have:

subject to X1 X’, to find the optimal integer K, K, K K

solutions of the k-objectives. 1= %="7090 1285, %2=""095[]1645
Step 6: Construct the payoff table and determing n For the first constraint, the equivalent deterstini

M, (the smallest and the largest numbers in th&onstraint is given by:

" column in the payoff table). X1+ % < C; = E{bj} + K,, ,Nar{bj} = 1+1.285(5) =
Step 7: Determine the;'s from the formula: 7 495

&=n +ﬁ(Mr—n,),rDK -{s} For the second constraint: 1 x X, < C, = E{b,} +

where t is the number of all partitons of the K, yVar{b} =3+1.645(2)=6.29

interval [n, M{]. For the third constraint: 3x+ x, < C; = E{bs} +

K, JVar{b} =9+1.285(2) = 11.57

Therefore, the problem (CHBILP) can be
understood as the corresponding deterministic
Step 9: Choose € OO and solve the integer linear bicriterion integer linear programming problem het

; form:
problem R(e*) using the branch-and-bound .
] S : : ; (BILP): max [fi(X) = 2% + X%, fo(X) = X1 +2%], subject
)r:lethoée to find its optimal integer solution {0 %, + % < 7.425, %+ %, < 6.2, 3% + X, < 11.57, %,

Step 10Determine the set If {{x*) by utilizing the Xz 0 and integers.

Kuhn-Tuck timalit dit Using the e-constraint methdd, then problem
uhn-tucker necessary optimaiity conditions (BILP) above with a single-objective function becsn

Step 8: Find the set
O={ eOR*Y n<g< M, ,rOK-{s} }

(*) corresponding to problems ). Pi(e): max fi(X) = 2x + X%, subject to x+ 2% > €5, X; +
Step 111f Tx(x*) is a singleton, go to step 12. X, < 7.425, X+ X <6.29, 3% + % < 11.57, %, %
Otherwise, go to step 13. > 0 and integers.
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It can be shown easily that 12.77§§*2 <14.2825. *

Problem R(€) can be solved &, = ¢, = 13 using
the branch-and-bound mettiddand its optimal integer
solution is found (X, %2 )= (1, 6).

Furthermore, problem;&) can be rewritten in the *
following parameters form as;'®): max f(x) = 2x +
X2,
Subject to *
X1+ 2% > €5, Xg + X < 7.425, -%+ % < 6.29, 3% + % <
11.57, 05 %<1,0<x,<6

Therefore, the Kuhn-Tucker necessary optimality
conditions corresponding to probleri(®) will take the
form:

2+, -0,+0,-3,-u,=0,

1+ 24, -5, -8,-8,-u,= 0, 2.

X, +2X,28,,
X, +X,<7.425,
-X;+X%,<6.29,
3x,+x,<11.57,
0<x, <1,
0<x, <6, #

Hy (=X, =2, +€,) =0, 4.

0,(x, +x,—7.425F 0,

9,(—x, +X,—6.29)= 0,

0,(3x, + x,—11.57F 0,
u,(x,-1)=0,
u,(x,—6)=0,

H1,0,,0,,0;,U;,U,2 0 S.

Where all the above expressions of the system (#%

are evaluated at the optimal integer solution

(X4 %) = (1, 6). In addition, it can be shown that:
8,=0,=03=0, u, i, >0, 0.

Therefore, the set 1, 6) is given by:

T.(1, 6) ={e0R| 12.7775< &, < 13 }. 7
A systematic variation of,[1R and 12.775 ¢, <
13 will yield another stability set,{1, 6). 8

CONCLUSION

The general purpose of this study was to invetgtiga
the stability of the efficient solution for chance-
constrained multiobjective integer linear programgni
problem. A parametric study has been carried ouhen
problem under consideration, where some basic
stability notions have been defined and charaetdriz
for the formulated problem.

Many aspects and general questions remain to
studied and explored in the field of multi objeetinteger
optimization problems under randomness. This sisidy
attempt to establish underlying results which holbef
will help others to answer some or all of thesestjaes.

There are however several unsolved problems, in
our opinion, to be studied in the future. Somehafse
problems are:

1561

An algorithm is required for solving multiobjecé
integer linear programming problems involving
random parameters in the left-hand side of the
constraints

An algorithm is needed for treating a large-scale
multiobjective integer linear nonlinear
programming problems under randomness,

An algorithm should be handled for solving intege
linear and integer nonlinear goal programs
involving random parameters.
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