American Journal of Applied Science 2 (11): 1491-1492, 2005 ISSN 1546-9239 © 2005 Science Publications

On Permutable Subgroups of n-ary Groups

Awni Fayez Al-Dababseh

Department of Mathematics and Statistics, Al-Hussein Bin Talal University, Ma'an, Jordan

Abstract: It is proved that every permutable subgroup of a finite n-ary group is subnormal.

Key words: finite n-ary group, permutable n-ary group, subnormal n-ary group

INTRODUCTION

We remind that, the system $G = \langle X, () \rangle$ with one n-ary operation () is called n-ary group^[1,2], if it is associative and every one of the equations.

 $(a_1 a_2 \dots a_{i-1} x a_{i+1} \dots a_n) = a$

is solvable in X, where $a_1, \ldots a_n, a \in X, i = 1, 2, \ldots, n$. Throughout this study all n-ary groups are finite. Let G be n-ary group and let H is a subgroup of G, then H is called permutable n-ary group if HT=TH for all subgroups T of G.

It is known however, that every permutable subgroup of a finite group is subnormal^[3,4]. In this study we prove this property for n-ary groups.

PRELIMINARIES

Notation is standard^[2]

 X_m^k -the sequence $X_m X_{m+1} \dots X_k$ (if m = k then $X_m^m = x_m$).

Definition 1: Let G be n-ary group, then $x_1^{k(n-1)}$ is an identity if $(x x_1^{k(n-1)}) = (x_1^{k(n-1)}x) = x$ for all $x \in G$.

Definition 2: Let G be n-ary group and let $x \in G$, then the sequence of elements \overline{x} of G is called an inverse of x if $x\overline{x}$ is an identity.

Let $H \le G$ and x_1^i , y_1^j are sequences of elements of G, where i + j = k(n-1) [$k \in N$], then the symbol $\left\lceil X_1^i H y_1^j \right\rceil$ denote all elements $\left(x_1^i h y_1^j\right)$ where $h \in H$.

By analogous of binary groups n-ary subgroup H of a group G is called normal if for any $x \in G$ and for any sequence \overline{x} we have $xH\overline{x} = H$.

Definition 3: N-ary subgroup H of a group G is called subnormal in G if:

$$H = N_0 \leq N_i \leq \ldots \leq N_{t-1} \leq N_t = G$$

Where N_i is a normal in N_{i+1} , i = 0, 1, ..., t-1.

If H and T are subgroups of n-ary group G, then $\begin{bmatrix} i & n-i \\ H & T \end{bmatrix}$ is the set of all products $(h_1 \dots h_i t_1 t_{n-i})$, where $h_i \in H$ and $t_j \in T$.

Lemma 1^[2]: Let H and T are subgroups of n-ary group G such that

$$\begin{bmatrix} H & T \\ T \end{bmatrix} = \begin{bmatrix} T & H \\ T & H \end{bmatrix}, \text{ then } \mathbf{B} = \begin{bmatrix} H & T \\ T & H \end{bmatrix} \text{ is a subgroup of } \mathbf{G}$$

and $B \supseteq H$.

Subgroup H of n-ary group G is called permutable if for any subgroup T from G we have

$$T \cap H \neq \Phi$$
 and $\begin{bmatrix} H & T \\ T \end{bmatrix} = \begin{bmatrix} n-1 \\ T & H \end{bmatrix}$

Lemma 2^[2]: Let H and T are subgroups of n-ary group G. If $H \cap T \neq \phi$, then

$$\left[\begin{bmatrix} H & T \end{bmatrix} \right] = \frac{|H||T|}{|H \cap T|}$$

MAIN RESULTS

We are now to prove the following.

Lemma 3: If H u T are permutable subgroups of n-ary group G, then $\begin{bmatrix} H & T \\ T \end{bmatrix}$ is permutable subgroup of G.

Proof: Let D any subgroup of n-ary group G, then by the definition of permutable subgroup $H \cap D \neq \phi$. By $\begin{bmatrix} n-1 \end{bmatrix}$

lemma 1 H $\leq \left[H T \right]$ and it is mean that H \cap D \subseteq

$$\left\lfloor H \overset{n-1}{T} \right\rfloor \cap \mathbf{D} \neq \mathbf{\phi}.$$

Now since

$$\begin{bmatrix} \begin{bmatrix} H & T \\ T \end{bmatrix}^{n-1} \end{bmatrix} = \begin{bmatrix} H & T & T & D^{n-1} \end{bmatrix} = \begin{bmatrix} H & T & D & T \end{bmatrix} = \begin{bmatrix} H & T & D & T \end{bmatrix} = \dots \begin{bmatrix} H & D & T \end{bmatrix} = \begin{bmatrix} n-1 & H & T \\ D & T \end{bmatrix} = \begin{bmatrix} n-1 & H & T \\ D & T \end{bmatrix} = \begin{bmatrix} n-1 & H & T \\ D & T \end{bmatrix} = \begin{bmatrix} n-1 & H & T \\ D & T \end{bmatrix}$$
So $\begin{bmatrix} H & T \\ T \end{bmatrix}$ is permutable subgroup in G.

Lemma 4: Let H be a subgroup of n-ary group G. Then if for some element $x \in G$ and for some sequence of inverse (\overline{x}) of x we have $[HH_1^{n-1}] = G$, where $H_1 = xH\overline{x}$, then $H = H_1$.

Corresponding Author: Awni Fayez Al-Dababseh, Department of Mathematics and Statistics, Al-Hussein Bin Talal University, Ma'an, Jordan

Proof: Let $x = (a \ b_1 \ \dots \ b_{n-1})$ where $a \in H$ and $b_i \in H_i$. Let $\overline{b_i}$ be a sequence of elements from H_1 which are inverses for b_i , $i = 1, 2, \dots, n-1$. Then

 $a = (ab_1 \dots b_{n-1} b_{n-1} \dots b) = (x \ \overline{b}_{n-1} \dots \overline{b}_n).$

It is clear, that $b_1 \dots b_{n-1} x$ is the sequence of inverses for a. That means if \overline{a} is any sequence of elements of H that inverse for a , then $H = [aH\overline{a}] =$

$$\left[\left(x\overline{b}_{n-1}...b_{1}\right)H\left(b_{1}....b_{n-1}\overline{x}\right)\right]=\left[xH\overline{x}\right]=H_{1}.$$

Lemma 5: Let x be an element of n-ary group G and let $\varphi_x : G \to G$ a map defined by $\varphi_x(g) = xg\overline{x}$ where $g \in G$ and \overline{x} is some sequence that is inverse for x. Then φ_x is an automorphism of G.

Proof: For any sequence of element g_1^n from G we have

$$\begin{aligned} \varphi_x(g_1,\ldots,g_n) &= x(g_1,\ldots,g_n)\overline{x} = \\ (x(g_1\overline{x}x)(g_2\overline{x}x),\ldots,(g_{n-1}\overline{x}x)g_n\overline{x}) = \\ ((xg_1\overline{x}))(xg_2\overline{x}),\ldots,(xg_n\overline{x}) &= (g_1^{\varphi_x}g_2^{\varphi_x},\ldots,g_n^{\varphi_x}) \end{aligned}$$

So φ_x is an endomorphism of n-ary group G.

If $g \in G$, then $\varphi_x(\overline{x}gx) = (x(\overline{x}gx)\overline{x}) = g$. It means that ℓx is an epimorphism. It is obvious that φ_x is an injection.

Theorem: If H is a subgroup of n-ary group G that is permutable with any subgroup of G, then H is a subnormal in G.

Proof: We prove by induction on the order of n-ary group G. let N is the greatest permutable subgroup of G $(N \neq G)$ that contains the subgroup H.

We show that N is a normal subgroup of G. let N is not normal subgroup. By the definition of normal subgroup we can find some $x \in G$ such that $xN \overline{x} \neq N$ where **Error! Bookmark not defined.** is some sequence that is inverse of x. let $\varphi_x : G \to G$ defined by $\varphi_x (g) = xg \overline{x}$ for all $g \in G$. by lemma 5, φ_x -is an automorphism n-ary group G. That means $xN \overline{x}$ is a permutable subgroup of n-ary group G u $|N| = |xN\overline{x}|$. Applying lemma 1 we have $D = \begin{bmatrix} n^{-1} \\ NN \end{bmatrix} = \begin{bmatrix} N \\ N \end{bmatrix}$ which contains N subgroup n-ary group G, where $N_1 = xN\overline{x}$. According to lemma 2 the order of this subgroup is:

$$d = \left| \begin{matrix} n-1 \\ N_1 \end{matrix} \right| = \frac{\left| N_1 \right| \left| N \right|}{\left| N_1 \cap N \right|}$$

Since $N \neq xN\overline{x}$ and $|N| = |xN\overline{x}|$, then d > N. But by Lemma 3 subgroup D is permutable in G. That means D = G and this contradict lemma 4. So N is a normal subgroup of g. Since |N| < |G| and H is permutable subgroup of N, then by, choosing group G we can conclude that H is subnormal subgroup in N. It means H is a subnormal subgroup of G.

REFERENCES

- 1. Kurash, A.E., 1974. General Algebra (Lectures 1969-70). Nauka, Moscow.
- Rusakov, C.A., 1992. Algebraic n-ary systems, MN. Nauka and Technika.
- 3. Stonehewer, S.E., 1972. Permutable Subgroup of Finite Groups. Math Z., 125: 1-16.
- 4. Schmidt, R., 1994. Subgroup Lattices of Groups. Walter de Gruyter, Berlin-New York.