
American Journal of Applied Sciences 2 (9): 1331-1336, 2005
ISSN 1546-9239
© 2005 Science Publicatio

Corresponding Author: Slim Ben Saoud, L.E.C.A.P.-E.P.T./ I.N.S.A.T. - B.P. 676, 1080 Tunis Cedex, Tunisia
1331

Codesign Methodology of Real-time

Embedded Controllers for Electromechanical Systems

1Slim Ben Saoud, 2Andreas Gerstlauer and 2Daniel D. Gajski
1L.E.C.A.P.-E.P.T./ I.N.S.A.T.-B.P. 676, 1080 Tunis Cedex, Tunisia

2CECS - UCI - Irvine, CA 92697-3425, USA

Abstract: Under increasing time-to-market pressures in the electric drives industries, the development
time of new algorithms and new control systems including their debugging time must be minimized.
This requirement can be satisfied only by using a well-defined system-level design methodology and
by reducing the migration time between the algorithm development language and the hardware
specification language. In this study, we propose to apply the SpecC methodology to the design of
control systems for power electronics and electric drives. We first begin with an executable
specification model of the control device. Then, we describe the different steps and transformations
used to convert this model to a communication model and finally into an implementation model ready
for manufacturing.

Key words: Co-design methodology, embedded systems, digital control, electric process

INTRODUCTION

 Nowadays, motor control is being a vast market
and the motor control industry is being a strong
aggressive sector. To remain competitive, the industry
has to develop sophisticated control systems which are
often composed of standard processors (µP, µC,
DSP)[1,2] and specific hardware components (ASSP,
FPGA, ASIC)[3-6]. Design of these systems represents a
difficult and studious task. Traditionally, engineers
work on implementation of new control algorithms
directly on an existing control device. Such projects
typically require 6 to 12 man-months and are composed
mainly of: (i) implementation of the developed
algorithm on the processor (after coding); (ii)
configuration and programming of the processor
peripherals for I/O operations; (iii) development, if
needed, of other interface circuits; (iv) test and
debugging of the obtained control system (usually by
using emulators); and finally, (v) validation of the
system by experimentation. All these tasks needed in
order to adapt the new algorithm to a given control
board are usually done manually. As a result, neither
the system performance nor the design time is
significantly optimized.
 A new trend is to use configurable logic circuits
(FPGA, CPLD, etc.) with processor units on the same
board. The use of these circuits allows rapid and
efficient adaptation of the used board to new
applications. However, partitioning between these
processing elements is still done in an ad - hoc way.
Therefore, important delays can be introduced into the
design process, mainly if the first decision about
partitioning of the application is not correct.
 To summarize, the design of the control systems
remains a delicate task, which is usually done manually

and the design decisions are made heuristically.
Consequently, resulting products are usually not
optimal and the time-to-market is relatively large.
 To resolve these problems, we suggest to apply
the SpecC methodology[7,8] to the design of
embedded control systems. This methodology
presents two main advantages: (i) productivity gains
by using automatic refinement tools and (ii) faster
design space exploration by using intermediate
models that are at higher levels of abstraction and
provide rapid and useful feedback.
 The benefits of the SpecC methodology have
previously been demonstrated on several industrial-
strength data-dominated, multimedia examples[8]. In
this study, we present the successful use of this
methodology for control-dominated system design. This
approach will be discussed using an application of the
direct-current (DC) motor control. A generalization of
this study to any other control system can be done
easily using the same steps discussed below.

SpecC methodology: The SpecC methodology is a set
of models and transformations between models (Fig. 1).
All models are written in a system-level design
language (SpecC) and are executable descriptions of
the same system at different levels of abstraction in
the design process. The transformations are a series
of well-defined steps through which the initial
specification is gradually mapped onto a detailed
implementation description ready for manufacturing.
After each design step, design models are analyzed
to estimate certain quality metrics such as
performance, cost and power consumption. Analysis
and estimation results are reported to the user and
back-annotated into the model for simulation and
further synthesis.

Am. J. Appl. Sci., 2 (9): 1331-1336, 2005

 1332

Fig. 1: SpecC methodology

Fig. 2: General diagram defining the control algorithm

(Ωref: the speed reference; Iref: the current
reference; α: the pulse width of the control
signal; Vh: the voltage applied to the motor; Im:
the motor current and Ωm: the motor speed)

 The specification model describes the functionality
as well as performance, power, cost and other
constraints of the intended design. It is a purely
functional description and does not include any
premature allusions to implementation details.
 During architecture exploration the specification
model is refined into an architecture model. This
includes the following design steps: (i) allocation
which determines the number and types of system
components such as general-purpose or custom
processors, memories and busses, which will be used to
implement the system behavior; (ii) behavior
partitioning which maps the behaviors (or processes)
that comprise the system functionality onto the
allocated processing elements; (iii) variable
partitioning which assigns variables to memories; (iv)
channel partitioning which assigns communication
channels to busses; and (v) scheduling which
determines the order of execution of the behaviors
assigned to either the standard (software) or custom
(hardware) processors after partitioning.

 Architecture exploration is an iterative process
culminating in an architecture model that represents a
refinement of the specification model. Each candidate
architecture is estimated to evaluate satisfaction of the
design constraints. If constraints are not met,
component reallocation is performed and a new
architecture with different components, connectivity,
partitioning, or scheduling is generated and evaluated.
 The architecture model describes the system
functionality as well as the overall structure of the final
implementation for the design. Communication in the
architecture model is described using abstract global
channels on the message-passing level.
 Communication Synthesis refines the abstract
communication between components in the architecture
model into an implementation over actual busses. The
task of communication synthesis includes insertion of
communication protocols, synthesis of interfaces and
transducers and inlining of protocols into synthesizable
components. In the resulting communication model,
communication is described in terms of actual wires
and timing relationships defined by the bus protocols.
 The communication model is the final output of the
system-level design process which describes the system
structure as a set of components connected through pins
and wires of the set of system busses.
 In the backend, the result of the synthesis flow is
handed off to the backend tools, as shown in the lower
part of Fig. 1. For the software part, compilers are used
to translate the software C code for the chosen
processor. For the hardware part, high-level synthesis
tools implement the behavioral C code describing the
functionality assigned to custom hardware and the
functionality of transducers which are necessary for
connecting different processors, memories and IPs.
After software compilation and hardware synthesis, the
final implementation model is generated.
 The implementation model represents a clock-cycle
accurate description of the whole system. This
description, in turn, then serves as the basis for
manufacturing of the system using traditional tools for
logic synthesis and physical design.

EMBEDDED CONTROLLER DESIGN

Description of the case study: The studied process is
composed of a Direct Current (DC) motor, a four-
quadrant chopper, a current sensor (LEM) for the
current capture and an optical incremental encoder
(OIE) for the speed capture.
 The used control algorithm is composed of two
control loops: an outer motion control loop with a
functioning period Tm and an inner current control loop
with a functioning period Tc (Fig. 2).
 The speed regulator computes the current reference
value Iref from the speed reference Ωref introduced by
the user and from the motor speed value Ωm. The
current regulator computes the pulse width α of the
control signals from Iref and the motor current Im.

Am. J. Appl. Sci., 2 (9): 1331-1336, 2005

 1333

Fig. 3: Specification model: overview of the DC_CTL

behaviors

Fig. 4: Architecture models after behavior partitioning

Fig. 5: Communication model after protocol in lining

 The interconnection of the components
implementing these regulators to the physical process
(chopper, motor and sensors) is done by using
Input/output (I/O) interfaces. For the studied DC
process, we use a Pulse Width Modulation module
(PWM) to generate two complementary control signals
from the α value. These signals are applied to the
control of the chopper functioning and therefore the
motor speed. The current and speed digital values (Im

and Ωm) are obtained from the sensor output signals by
using capture modules (ACQi and ACQΩ) which
translate information from the logic and analog domain
to the digital one.

Specification: The specification model of the studied
system is composed of three modules encapsulated in
SpecC behaviors (Fig. 3a): (i) CTL_Alg for the control
algorithm, (ii) ACQ for the information acquisition
and (iii) PWM for the generation of control signals.
Each of them can be split up into different sub-
behaviors associated with different clocks. As an
example, Fig. 3b shows the control algorithm split up
into two sub-behaviors: M_CTL which represents the
speed regulator and C_CTL which represents the
current regulator.
 The SpecC specification describes the control
device functionality in a clear and precise way as it uses
a modular and hierarchical representation. The resulting
model is executable and allows the validation of the
developed algorithm by simulation. Using the SpecC
specification, we were able to evaluate several different
variants of the control algorithm in a matter of hours.

Architecture exploration: For the design of control
devices, the I/O modules are usually implemented as
hardware modules (ADC, Timers, etc.) while the
control algorithm is implemented in a standard
processor. However, this solution is not always
adequate for real time requirements of sophisticated
algorithms. In these cases, we have to move the critical
tasks (such as the current regulator) of the control
algorithm from the processor into custom hardware.
 According to these considerations, we explored
several architecture solutions for the implementation of
the algorithm ranging from a pure software solution to a
pure hardware one. However, as a compromise between
real-time performance, flexibility and user-friendliness,
we only considered mixed solutions which include HW
and SW components. Specifically, Fig. 4 shows the two
possible candidate architecture models we developed
for the DC-process controller.
 At this stage of architecture exploration, SpecC
tools allow estimation of certain quality metrics such as
performance, power consumption, etc. Results showed
that the execution time of C_CTL is reduced by 88%
(from 5 µs down to 0.6 µs) when moving C_CTL from
software to hardware. Furthermore, C_CTL takes up
70% of the DSP utilization (compared to 2 µs execution
time of M_CTL), i.e. moving C_CTL into hardware
frees up the processor for other tasks and/or for power
savings. We therefore selected the second architecture
model (Fig. 4b) which is composed of: (i) a hardware
component (PE1-ASIC) implementing the I/O
modules and the current control module; and (ii) a
processor core (DSP56600 core) for both of the
speed control module and the interface with the user
(PE2-DSP).
 In order to simplify the communication between
processors, we selected a communication architecture
with only one bus and one bus master (DSP) where
synchronization between slaves and masters is
implemented using interrupts.

Am. J. Appl. Sci., 2 (9): 1331-1336, 2005

 1334

Fig. 6: RTL processor implementing the C_CTL module

Fig. 7: RTL processor implementing the EXCH module

Fig. 8: Co-simulation results of the C_CTL hardware

module

At the beginning of each new Tc period, the ASIC
interrupts the DSP and both start the exchange process.
Acquisition of Ωm values is done by the master at the
beginning of each Tm period.

Communication synthesis: We used the DSP 56600
bus protocol[9] for both the ASIC and the DSP. The

communication model is generated using two steps:
protocol insertion (protocol of the DSP 56600) and
protocol inlining into the ASIC.
 The resulting communication model is shown on
Fig. 5. Note that we added a hardware exchange
module (EXCH) to the C_CTL module for
implementation of its communication with the DSP.

IMPLEMENTATION AND VALIDATION

Overview of the implementation: At the end of the
SpecC synthesis flow, the final communication
model is handled off to the backend tools. For
each software part, C code is generated and
compiled into a program that runs on the
corresponding processor. For each hardware part,
high-level synthesis is performed to create RTL
models which are processed using traditional logic
synthesis and place & route tools. The outputs of
the high-level synthesis process are RTL processor
structures which are composed of a custom
controller associated with a custom Datapath. For
examples, Fig. 6 and 7 show the RTL processors
synthesized for the C_CTL and the EXCH hardware
modules, respectively.

Am. J. Appl. Sci., 2 (9): 1331-1336, 2005

 1335

Fig. 9: Implementation characteristics of different

hardware modules

Validation of the implemented hardware modules:
The implemented hardware modules have been
validated separately by co-simulation using Xilinx
System Generator and Matlab tools. Results are
compared to those of a software floating-point
implementation. Figure 8 shows the obtained relative
errors on the current and speed values and demonstrates
the efficiency of the designed system.
 The different hardware modules have been
implemented using Xilinx Virtex2XC2V250 type
FPGAs. The resulting design characteristics are
summarized in Fig. 9.
 These results show that the designed hardware
modules occupy less than 30% of the circuit surface.
We can therefore confirm that hardware
implementation of digital control devices is
nowadays very advantageous given the high
integration scales of FPGA circuits and the
performance of EDA tools.

DISCUSSION

 Figure 10 and Table 1 show the results for the
design of the controller system from specification
model down to implementation model.
 To validate the models, we performed simulations
at all levels. As we move down in the level of
abstraction, more timing information is added,
increasing the accuracy of the simulation results.
 As the results show, moving to higher levels of
abstraction enables more rapid design space
exploration. Through the intermediate models, valuable
feedback about critical design aspects can be obtained
early and quickly.
 As code sizes for different models suggest, more
lines of code are added to the model with lower levels
of abstraction, reflecting the additional complexity
needed to model the implementation details introduced
with each step. Table 1 demonstrates with the use of
available refinement tools that can automatically
generate all design models from the initial specification
model, large productivity gains of 500x or more can be
achieved (especially for the sophisticated control
systems).

Fig. 10: Design model complexities

Table 1: Refinement effort
 Modified Manual Automated
 lines User/Refine
Spec → Arch 550 1~2 weeks 5mins / <0.5min
Arch → Comm 200 0.5~1week 5mins / < 0.5min
Comm → Impl 2000 4~8 weeks 40mins / <4mins
Total 2750 5.5~11 weeks 50mins / <5mins

 The implementation results of the DC process
controller demonstrate the importance and efficiency of
VLSI technology in the development of real-time,
control-dominated systems. Using the SpecC
methodology and associated EDA tools, the
presented design was implemented as a circuit on a
single FPGA component and completed in a matter
of weeks.
 Moreover, with the evolution of semiconductor
technology and the development of efficient CAD tools,
the use of the FPGA circuits will become increasingly
important, particularly for developing reconfigurable
SOC (RSOC) specific to process control. These RSOC
involve the integration of different PEs (such as
processors and peripherals) and their interconnection on
the same reconfigurable component[10,11].
 The use of co-design methodologies and RSOC
techniques and tools[12,13] will be very advantageous for
rapid and efficient development of digital control
devices. In future work, we are planning to develop IPs
specific to the automation domain. Furthermore, we are
studying the efficient integration of such IPs into RSOC
systems and system design methodologies.

CONCLUSION

 In this study, we applied the SpecC system-level
design methodology to the design of control systems for
power electronics and electric drives processes. We
presented the study of a DC motor drive with a control
system based on a DSP for the motion control, an ASIC
for the current control and custom hardware modules
for I/O processing. This study can be easily generalized
to other process control systems.

Am. J. Appl. Sci., 2 (9): 1331-1336, 2005

 1336

 We have shown the various steps that gradually
refine the initial specification down to a detailed
communication model. This model is then further
implemented using traditional CAD tools and FPGA
circuits.
 Using the SpecC methodology, we were able to
finish the complete design in a short amount of time.
Results show that with the help of automatic refinement
tools, significant productivity gains can be achieved.
Furthermore, intermediate models at every stage of the
design process provide useful feedback about design
quality metrics for rapid, early design space
exploration, allowing us to evaluate several algorithm
variants and candidate architectures. In summary, the
well-defined nature of the methodology’s models and
transformations helps focusing design efforts on central
issues, provides the basis for design automation tools
and enables application of formal methods in the future.

ACKNOWLEDGMENTS

 The authors would like to thank the Fulbright
Scholar Program for supporting this project. We would
also like to thank Prof. Rainer Dömer for his interesting
comments and his support.

REFERENCES

1. Zhang, W., G. Feng, Y.F. Liu and B. Wu, 2004. A

digital Power Factor Correction (PFC) control
strategy optimized for DSP. IEEE Trans. Power
Electronics, 19: 1474-1485.

2. He, D. and R.M. Nelms, 2004. Fuzzy logic average
current-mode control for DC/DC converters using
an inexpensive 8-bit microcontroller. The IEEE
Industry Applications Conf., 4: 2615-2622.

3. Peyravi, H., A. Khoei and K. Hadidi, 2002. Design
of an analog CMOS fuzzy logic controller chip.
Fuzzy Sets and Systems, 132: 245-260.

4. Takahashi, T. and J. Goetz, 2004. Implementation
of complete AC servo control in a low cost FPGA
and subsequent ASSP conversion. 19th Ann. IEEE
Applied Power Electronics Conf. and Exposition 1:
565-570.

5. Abu-Rub, H., J. Guzinski, Z. Krzeminski and H.A.
Toliyat, 2004. Advanced control of induction
motor based on load angle estimation. IEEE Trans.
Industrial Electronics, 51: 5-14.

6. Oh, S.N., K.I. Kim and S. Lim, 2003. Motion
control of biped robots using a single-chip drive.
IEEE Intl. Conf. Robotics and Automation 2: 2461-
2465.

7. Gajski, D., J. Zhu, R. Dömer, A. Gerstlauer and S.
Zhao, 2000. SpecC: Specification Language and
Methodology. Kluwer Academic Publishers.

8. Gerstlauer, A., R. Dömer, J. Peng and D. Gajski,
2001. System Design: A Practical Guide with
SpecC. Kluwer Academic Publishers.

9. Motorola, Inc., Semiconductor Products Sector,
DSP Division, 1996. DSP 56600 16-bit Digital
Signal Processor Family Manual,
DSP56600FM/AD.

10. Banerjee, S. and N. Dutt, 2004. Efficient search
space exploration for HW-SW partitioning.
CODES + ISSS’04, pp: 122-127.

11. Lee, T.L. and N.W. Bergmann, 2004. Interfacing
methodologies for IP re-use in reconfigurable
system-on-chip. Proc. of SPIE -Microelectronics:
Design, Technology and Packaging, 5274: 454-
463.

12. Lysecky, R., F. Vahid and S.X.D. Tan, 2004.
Dynamic FPGA routing for just-in-time FPGA
compilation. Proc. 41st Ann. Conf. Design
Automation, pp: 954-959.

13. Bansal, N., S. Gupta, N. Dutt, A. Nicolau and R.
Gupta, 2004. Network topology exploration of
mesh-based coarse-grain reconfigurable
architectures. Design, Automation and Test in
Europe Conf. pp: 474-479.

