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Abstract: This research describes the development of a new structured 2D CFD solver for 
compressible flow. The high-speed turbulent flow in a diffuser and a cascade of nozzle blade is 
predicted using standard k-ε turbulence model. The new finite volume CFD solver employs second-
order accurate central differencing scheme for spatial discretization and multi-stage Runge-Kutta time 
integration to solve the set of nonlinear governing equations with variables stored at the vertices. 
Artificial dissipations with pressure sensors are introduced to control solution stability and capture 
shock discontinuity. In general, the predictions compare well with the experimental measurements. 
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INTRODUCTION 

 
 In general, there are two methods available in 
solving the compressible Navier-Stokes Equations 
(NSE). The most prominent method is to solve the 
system of non-linear equations in a segregated manner 
by employing an iterative procedure in which solutions 
are alternatively obtained from the pressure and velocity 
fields. The link is then provided by the continuity 
equation. In this algorithm, pressure is treated as the 
primary flow variable due to the fact that pressure 
gradient is always finite regardless of Mach regimes. 
Therefore, this is the common scheme employed by the 
modern commercial CFD codes due to the robustness of 
the numerical procedure. Known as Pressure Based 
Method (PBM), this algorithm has been applied 
extensively in the incompressible flow field originally 
and has been extended to compressible flow by Issa and 
Lockwood[1], Van Doormaal et al.[2], McGuirk and 
Page[3], Watterson[4] and Jasak[5].  Notwithstanding this, 
due to the fact that the momentum, continuity and 
pressure equations are solved in an uncoupled 
approach, this may result in convergence problems, 
especially in situations where the gradients of flow 
variables are relatively large such as the stagnation 
point at the leading edge. The idea of density variation 
in compressible flow field has led to the emergence of 
coupled solution technique since density exists as a 
dependent variable in the system of compressible 
Navier-Stokes equations. By realizing the capability of 
time-marching technique to circumvent the numerical 
difficulties in mixed subsonic-supersonic problem, time 
marching procedure has been utilized to solve the 
system of NSE in a coupled manner by many 

researchers such as Denton[6], Ni[7], Dawes[8], Ollivier[9] 
and Lassaline[10]. 
 The vast majority of fluid applications involve 
turbulence. Cases such as fluid flow in a pipe, flow 
processes in the combustion chamber, flow over an 
airfoil will exhibit a chaotic complex motion defined as 
turbulent flow. While the popularity of Direct 
Numerical Simulation (DNS) and Large Eddy 
Simulation (LES) have become noticeable due to the 
rapid development of High-Performance Computing 
(HPC) technology, the general turbulent fluid motions 
are well described by the Reynolds-Averaged Navier-
Stokes (RANS) equations with the inclusion of 
Reynolds stresses into the original full Navier-Stokes 
equation, which is computationally cheaper[8]. To 
resolve the Reynolds stresses, more equations are 
necessary and these extra equations are classified as 
turbulence models. 
 In this study, the new CFD solver will be used to 
investigate the high-speed compressible flow in a 
diffuser and nozzle blade cascade with standard k-ε  
turbulence model for closure. The idea presented is an 
extension of the original invoiced 2D solver for two-
phase steam flow[11].  
 

MATHEMATICAL FORMULATION 
 
The Governing Equations: The two-dimensional 
Reynolds-averaged Navier-Stokes equations with the k-
ε  turbulence model as closure describing the turbulent 
flow of a compressibthe strong conservation formrong 
conservation form in the x-, y-Cartesian co-ordinate 
system may be written as:  
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 W is known as the conserved variables, F and G  
are the overall fluxes in x-, y- directions respectively 
and J  represents the source vector. 

 
NUMERICAL SCHEMES 

 
Solving Procedure: Starting from the flow field 
variables obtained from the previous time step, the 
conserved variables in RANS are solved with the 
appropriate boundary conditions. The updated variables 
are then substituted in the standard k-ε  turbulence 
model to solve for turbulent kinetic energy and 
turbulent dissipation rate. Wall functions and turbulent 
boundary conditions are then imposed. The updated k 
and ε  will be used to calculate the turbulent viscosity 
and the Reynolds stresses. Subsequently, the new 
Reynolds stresses will be utilized to solve RANS in the 
next iteration. The loop continues until convergence is 
achieved. 
 
Cell-vertex finite-volume spatial discretization: The 
flow domain is replaced by a finite number of grid 
points, which are generated algebraically by the built-in 

pre-processor[12].  The mesh system is commonly known 
as H-mesh and divides the physical domain into a set of 
discrete rectangular control volumes.  
 A cell-vertex formulation is used in which the flow 
variables are stored at the four vertices of a 
quadrilateral cell. It has been shown by Martinelli[13], 
Dick[14], Swanson and Radiespiel[15] that cell-vertex 
formulation offers some advantages over the cell-
centered one in which cell-vertex method offers higher 
accuracy on irregular grid. For a uniform mesh, there 
would be no difference between the cell-centered and 
cell-vertex schemes; however, cell-vertex scheme does 
not require extrapolation to the solid boundary to obtain 
the wall static pressure, which is necessary in solving 
the momentum equations for cells adjacent to the solid 
boundary. 
 Starting from known values of primitive variables 
from the previous time-step, the values of F  and G  are 
calculated for each node. Then the line integration is 
performed for each control volume in turn for the six 
conserved variables (RANS + k-ε Turbulence Model).  

 
The discretized RANS:  
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 The discretized standard k-ε  model:  
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 After the spatial integration, the cell residual will 
take the form:  
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where ( )ijR w  represents the sum residuals from RANS 

or turbulence model. 
 The calculated residuals apply to the values of 
properties within the cell, whereas, the variables are 
actually   stored   at   the   nodes. Consequently, they 
have   to   be   redistributed to the four surrounding 
nodes.   This   is   done   by   sharing the changes 
equally between   the four nodes in the context of 
central differencing.  
 Thus, the equivalent discretized equation for a node 
will be: 
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Artificial dissipations: All second-order central-
differencing schemes, even with a stable time-step, 
suffer from certain tendencies to instability due to the 
odd-even decoupling near a discontinuity. The scheme 
can be stabilized by introducing a small amount of 
artificial viscosity, suggested by Jameson et al.[16]. First 
–order upwind differencing scheme may be used to 
remedy the stability problem, however, the scheme 
tends to damp the solution so much and alter the flow 
physics. Therefore, 2nd order accurate central 
differencing scheme, which is consistent with the 
framework  of   Navier-Stokes   equations,   is  applied 
to   both   RANS   and   turbulence   model   in the 
current   work   with   suitable   amount   of artificial 
viscosity. 
 This artificial viscosity formulation is a blend of 
second and fourth-order terms with a pressure switch to 
detect changes in pressure gradient[16]. After the 
addition of the dissipation terms, Equation (5) becomes: 
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The multi-stage runge-kutta time stepping: Equation 
(6) is integrated with respect to time by means of a four-
stage Runge-Kutta time stepping scheme, as proposed 
by Jameson et al.[16]: 
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where, the superscripts, n and n+1 refer to the time 
intervals in the main integration sequence, 1, 2, 3, 4 
refer to the intermediate time-steps in the Runge-Kutta 
scheme. The coefficients 1 2 3 4, , ,α α α α  are 0.250, 0.333, 

0.500 and 1.000, respectively.   
 
Boundary conditions: The mathematical theory of 
incompletely parabolic PDEs indicates the number and 
type of boundary conditions for the unsteady 
compressible RANS. In the present work, Euler-type of 
boundary condition is applied except at solid wall 
where no-slip condition is imposed. At the inlet, the 
total pressure, total temperature, flow angle, turbulent 
kinetic energy and turbulent dissipation rate are fixed, 
while the static pressure is extrapolated from the 

interior if the inflow is subsonic. Otherwise, all 
variables are fixed at the inlet. On exit, if the outflow is 
subsonic, only the static pressure is fixed, while total 
pressure, total temperature and flow angle are 
extrapolated from the interior by zero-order 
extrapolation. If the exit flow is supersonic, all four 
variables are extrapolated from the interior. For k-ε  
transport equations, k andε  are extrapolated for 
arbitrary exit flow conditions. 
 Periodic boundary condition is essential in 
simulating flow in turbomachines. The periodicity 
condition on the bounding streamlines is easily satisfied 
with treating the calculating points on each of the 
bounding streamline as if they are interior ones, by 
assuming that all properties are equal for corresponding 
points on each of the streamline. Nodes on the periodic 
boundaries will have contributions from four 
corresponding cells on both sides of the boundaries.  
 On solid walls, the values of velocity components 
as well as k and ε  are set to zero. Adiabatic condition 
is imposed. For nodes adjacent to the wall, wall 
functions are introduced to calculate k and ε . 
 
Initial conditions: To start the computation, initial flow 
field variables must be specified at all calculating 
points. In this approach, a linear variation of pressure 
between the inlet and exit planes is assumed from which 
the pressures at all calculating points can be obtained. 
The tangency condition is enforced to obtain the 
velocity components at each calculating points and no 
variation of other properties along the pitch is assumed. 
Using the inlet stagnation temperature and pressure, the 
assumed static pressure and velocity components, other 
properties can be calculated using isentropic relations. 
 For turbulence models, k and ε  are set to the 
values consistent to the inlet k andε . The fluctuating 
Reynolds stresses are then calculated using business 
relation. 
 

APPLICATIONS 
 
Blade-to-blade calculations on a turbine nozzle 
cascade: In order to validate the current solver, blade-
to-blade flow simulation on a turbine nozzle blade 
cascade will be presented. The blade profile belongs to 
a stator of a low-pressure steam turbine. The geometry 
of the blade was generated using the in-house pre-
processor of the current solver[12], as shown in Fig. 1. 
The experimental surface pressure measurements on the 
cascade were performed by Mamat[17].  
 Three cases in overall inlet total to outlet static 
pressure ratio, Poinlet/Pb of 1.49, 1.83 and 2.32 were 
simulated. The overall pressure ratio of 2.32 
corresponded to supersonic outlet, while 1.83 
corresponded to transonic outlet. The flow conditions 
with subsonic outlet were represented by tests at an 
overall pressure ratio of 1.49.  
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Fig. 1: The blade geometry of the nozzle blade 

cascades 
 

 
 
Fig. 2: Pressure plot at suction side for the nozzle 

cascade in subsonic flow condition 
 

 
 
Fig. 3: Pressure plot at suction side for the nozzle 

cascade in transonic flow condition 

 
 
Fig. 4: Pressure plot at suction side for the nozzle 

cascade in supersonic flow condition 
 

 
 
Fig. 5: The geometry of the sajben diffuser 
 
 The mesh consisted of 33 x 230 grids. The mesh 
resolution near the wall was adjusted to be higher to 
account for the boundary layer development. A 
comparison of measured and calculated values of blade 
surface static pressure for subsonic flow, transonic flow 
and supersonic flow is illustrated in Fig. 2-4. In general, 
the numerical results show good agreement with the 
experimental data, except the pressure ratio at the 
trailing edge due to mesh distortion.  
 
Sajben diffuser: Transonic turbulent flow has been 
computed in a two-dimensional converging-diverging 
duct using the standard k-ε model. Extensive 
experimental   data   are   available   for   this geometry, 
at a variety of flow conditions (Chen, Sajben and 
Kroutil,[18],   Bogar, Sajben and Kroutil[19], Salmon, 
Bogar and Sajben[20], Sajben, Bogar and 
Kroutil[21],Bogar[22]). The flow fields being modelled 
were the weak- and strong-shock diffuser cases of 
Sajben[23]. The geometry of the diffuser is presented in 
Fig. 5. 
 A 51x81 body-fitted computational mesh was 
generated algebraically. Adiabatic no-slip conditions 
were used on both the top and bottom walls. The 
pressure ratio (Pexit/Poinlet) was 0.82 and 0.72 for strong- 
and weak-shock case, respectively. 
 Figure 6 and 7 compares the pressure 
distributions along the bottom and the top wall of the 
diffuser. The shock location predicted by the current 
solver compares well with the experimental data  
carried  out  at Pexit/Poinlet = 0.82 (weak shock).  
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Fig. 6: Pressure plot at bottom wall for Pexit/Poinlet = 

0.82 (weak shock) 
 

 
 
Fig. 7: Pressure plot at top wall for Pexit/Poinlet = 0.82 

(weak shock)  
 

 
 
Fig. 8: Pressure   plot   at   bottom wall for Pexit/Poinlet 

= 0.72 (strong shock) 

 
 
Fig. 9: Pressure plot at top wall for Pexit/Poinlet = 0.72 

(strong shock) 
 
Next, the strong-shock case was simulated. Again, the 
illustrated results are comparable with the experimental 
data, except that the shock is predicted to occur 1 grid 
point further downstream as shown in Fig. 8 and 9. 
However, by considering the coarseness of the mesh 
employed in the current solver, the result is satisfactory. 
 

CONCLUSION 
 
 In the present work, a new two-dimensional 
compressible flow solver has been developed for 
structured   grid.   It   uses the second-order accurate 
cell-vertex   finite-volume   spatial   discretization and 
Runge-Kutta   temporal   integration.   Standard k-ε 
turbulence   model   has   been   successfully   adapted 
to   simulate the compressible turbulent   flow in a 
cascade   of   nozzle   blade   and   Sajben   diffuser. 
Both cases show a good comparison with the 
experimental data, except the excessive smearing of 
shock   wave   at the trailing edge of the nozzle blade 
cascade.  Research   is   still   in   progress on the 
existing   turbulence   model   to   compute   the 
turbulent   viscosity   in   a   more accurate way. 
 Further work to be done on the solver includes the 
extension to 3D environment and modification to 
handle arbitrary meshes. 
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