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Abstract:  In two preceding works, the idea of partial conservation theorems was introduced and 
conservation equations for partial energy and partial angular momentum were established. A similar 
conservation theorem for partial vorticity of incompressible fluids is established here. The vorticity 
vector is divided into two elements (both denoted “partial vorticity”) and their conservation equations 
established separately. They show that, in addition to terms similar to the terms of the conservation 
equation for total vorticity, the conservation equation for partial vorticity has a term that describes the 
transfer of vorticity between the partial vorticities, i.e. Without affecting the vorticity vector. A simple 
example of an application is included. It shows that the vortex in the vicinity of a hydraulic jump is 
located above the surface level of the incoming flow. 
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INTRODUCTION 

 
 In two preceding works[1,2], conservation theorems 
of partial energy and partial angular momentum were 
published. In these works, the energy and the angular 
momentum were split into several parts and separate 
conservation equations were established for each part. 
This separation was achieved by realizing that e.g. 
Energy-even if it is a scalar-is often based on vectors, 
such as velocity and gravity vectors. In order to make 
the direction information of these vectors available, 
partial energy was established by a similar procedure as 
total energy, but based on one component of the 
equation of motion at a time instead of the complete 
equation. A similar procedure was adopted to establish 
partial angular momentum. The latter provides a means 
to separate angular momentum of the waves (denoted 
“wave spins”[3,4]), from the angular momentum of 
horizontal currents[5,6]. By the conservation laws it was 
possible to study the interaction between waves and 
currents and even consequences of wave breaking. The 
latter was possibly because conservation equations can 
be based on the situation before and after wave 
breaking, without having to treat the rather chaotic 
processes of wave breaking in the meantime[5].  
 In order to complete the set of partial conservation 
equations applicable to fluid dynamics, the 
conservation equation of partial vorticity is established 
here. (See e.g.[7] for vorticity). As in the two previous 
cases, they include terms similar to the conservation 
equation of total vorticity, but also transfer terms that 
describe to what extent vorticity is transferred between 
the partial vorticities. As an example of application, the 
flow in a hydraulic jump is briefly studied. 

Basic conservation equations: In order to split a 
vorticity vector into two elements and to establish 
the transfer terms that determine the transfer of 
vorticity between the elements, the partial vorticity is 
defined as: 
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 Here i and j can have the values 1, 2 and 3, but not 
the same value. Further ui is the velocity component in 
the direction of the ith axis of a Cartesian coordinate 
system and xi the corresponding coordinates.  
 Partial vorticity is established from the i-th 
component of the equation of motion of an 
incompressible, viscous fluid: 
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where, t is the time,  p the density of the fluid, ν  its 

kinematic viscosity, p the pressure and δ the Kronecker 
delta. Further, the acceleration of gravity (g) is assumed 
to be in the negative direction of the x3 axis. The 
summation rule is not adopted. 
 In order to obtain the conservation equation for 
partial vorticity, differentiation with respect to xj is 
performed: 
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 By reorganizing and adding and subtracting 

k ku / x∂ ∂  in the parenthesis: 
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 The sum of the first three terms in the parenthesis 
equals div v, which vanishes for an incompressible 
fluid. So, for an incompressible fluid, after shuffling the 
terms: 
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 The left hand side is the total derivative of the 
partial vorticity. Hence: 
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Here the dots above γij  denotes total time 
differentiation.  
 The two first terms at the right hand side are 
functions of ui, uj and uk. These terms vanish for a two-
dimensional flow, so that: 
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ij ij ijγ = ν∇ γ − θɺ   (7) 

 
Where: 
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 In Eq. (7), i and j may exchanged. Then, since 

θij=θji 
 

2
ji ji ijγ = ν∇ γ − θɺ   (9) 

 
 The kth component of the vorticity vector (Vk) can 
be written as a difference between the two partial 
vorticities: 
 

k ij jiV = γ − γ   (10) 

 
 Hence by subtracting Eq. (9) from Eq. (7), the 
conventional vorticity equation in two dimensions is 

obtained. If the two θij  terms are non-zero, vorticity is 
transferred between the two partial vorticities i.e. 
Without affecting the total vorticity of the system. It 

implies that θij  works as a transfer term for vorticity 

between the two partial vorticities, γij and γji. So by 
establishing the equation for partial vorticity, a new 
term is established that gives additional information 
regarding the flow that is not obtained from the 
ordinary vorticity equation. 
 
Conservation equations for a two-dimensional 
volume: Consider a two-dimensional flow in the x-y 
plane that is not a function of the third coordinate. If 
viscosity is ignored and Eq. (7) is integrated over an 
area A in the x-y plane surrounded by a closed curve C, 
then: 
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where, Γxy is the integral of the partial vorticity based 

on the x-component of the fluid velocity u, i.e.:  
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 Green's theorem is given as[8]: 
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where the line integral is taken in the counter-clockwise 
direction. By choosing P = 0 and Error! Bookmark 
not defined., eqn. (13) gives: 
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 Similarly, by choosing P p / x= −∂ ∂  and Q = 0 in 

Greens theorem: 
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 Hence we may write Eq. (11) either as 
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or as: 
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 Under special circumstances these integrals are 
particularly simple: In Eq. (16), since dx = 0 along the 
parts of C that are parallel to the y axis, the integral 
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vanishes along these lines. Similarly if parts of C are 
parallel to the x axis they do not contribute in Eq. (17). 
Further, if C is following a line where p = constant (e.g. 
a free surface) both integrals above vanish. 
 The equation is even simpler if the area A is 
rectangular and the sides of the rectangle are parallel to 
the coordinate axes. In this case, let the lower left 
corner be at x1, y1 and the upper right corner at x2, y2. 
Then integration of either Eq. (11), (16) or (17) all 
imply: 
 

xy 11 22 12 21

1
(p p p p )Γ = + − −

ρ
ɺ   (18) 

 
 So, in the non-viscous, two-dimensional case, 
whatever happens inside the volume, the transfer of 
vorticity between a pair of partial vorticities depend on 
the pressure of the four corners of the rectangle only. 
 
Application of partial vorticity on a hydraulic jum p: 
The hydraulic jump is theoretically treated in many 
textbooks, e.g.[9]. The conventional theory gives little 
information on the velocity distribution inside the jump, 
however, as only mean velocities over the depth are 
considered. By the partial vorticity it is possible to 
obtain more detailed information. Hence the hydraulic 
jump is studied in the following. 
 Figure 1 shows a cross section of a hydraulic jump, 
where the flow is coming from the left as indicated by 
an arrow. The five points shown on the figure form two 
vertical lines. They are located where the flow can be 
considered horizontal and the pressure hydrostatic, but 
near enough the jump to disregard the consequences of 
viscosity in the flow below the mutual level of point 2 
and point 5. 
 First, the rectangle 1 – 2 – 5 – 4 is treated. For this 
rectangle, Eq. (18) can be written as: 
 

( )xy 4 2 5 1

1
p p p pΓ = + − −

ρ
ɺ  (19) 

 
where the subscripts refer to the numbers of the points 
in Fig. 1. Since the pressure is static at both ends of the 
control volume, p4 – p5 = p1 – p2 and therefore the 
contents of the parenthesis in eqn. (19) vanishes. Hence 

Γxy = constant. This implies that the net transfer 
imposed by the non-viscous transfer term vanishes 
below the surface level of the incoming water. Instead 
of point 2 and point 5, any pairs of points at a mutual 
level below them can be chosen with exactly the same 
result. Consequently, any vorticity of the incoming flow 
remains unchanged from cross-section 5-4 to cross-
section 2 – 1. As viscous forces within the rectangle are 
neglected, the incoming flow remains unchanged since 
the three-dimensional terms in Eq. (6) cannot develop 
by any other means. Consequently the vortex has to be 
located above the surface level of the incoming flow.  

 
 
Fig. 1: Definition sketch of a hydraulic jump 
 
Clearly the viscous forces cannot be disregarded over 
long distances. Hence this conclusion is only valid near 
the jump.  
 Another alternative is to treat all fluids below the 
surface between point 3 and point 5, i.e. The area 
described by straight lines from 5 to 4 and further to 1 
and 3 and back along the free surface to 5. For this case 
Eq. (17) is adopted. Since p is constant at the surface 
and dy = 0 at the bottom, their contribution to the 
integral vanish. Hence only the two vertical lines 
contribute. Since the pressure is static at both ends of 
the volume under consideration: 
 

xy g HΓ = − ∆ɺ   (20) 

 

where ∆Η is the increase of the surface level through 
the hydraulic jump. Further, Eq. (10) Implies that 

Γxy = Γyx, where: 
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in which v is the velocity component in the y direction. 
Therefore Eq. (20) implies that also: 
 

yx g HΓ = − ∆ɺ   (22) 

 
 As a consequence, both partial vorticities are 
generated by the transfer term in such a way that the 
total vorticity remains unchanged. Since u / y∂ ∂  and 

v / x∂ ∂  both are negative, the well known vortex is 
allowed. The first term allows a negative horizontal 
surface flow to develop downstream the jump, while 
the second term feeds vertical flows. According to the 
first part of this section, the vortex is basically located 
above the surface level of the incoming flow. Hence 
the flow field in the vicinity behind the hydraulic 
jump is to some extent explained by the non-viscous 
terms. 
 Any further discussion of the flow in the vortex 
must include all terms of Eq. (6) since the flow is 
strongly turbulent here. As the purpose of this 
example is to show how the conservation equations of 
partial vorticity work, a further discussion of the 
hydraulic jump is considered to be outside the scope 
of this study.  
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CONCLUSION 
 
 In three studies, one of partial energy[1], one with 
partial angular momentum[2], and this on partial 
vorticity, three partial conservation quantities for fluid 
dynamics have been established. They form a new set 
of conservation equations for use in fluid dynamics. By 
establishing conservation equations based on only one 
component of the equation of motion at a time, it is 
possible to study the interaction between different flow 
regimes by simple means. This has been demonstrated 
briefly here, where the horizontal flow and the vertical 
flow of a hydraulic jump are considered and their 
interactions-and absence of interactions-have been 
studied. For this purpose the transfer term between the 
two partial vorticities is described in Eq. (8) and on 
integral form of a two-dimensional non-viscous flow in 
Eq. (16)-(18).  
 Whether energy, angular momentum or vorticity is 
treated, all three types of partial conservation equations 
have terms that give information on the transfer 
between e.g. Horizontal and vertical flows. From these 
transfer terms, information can be obtained on the 
stability of the flow, as non-zero transfer terms imply a 
flow that changes, either in time or space. As 
demonstrated, these conservation equations open for the 
solution of new problems and further insight into other 
problems. Here we have seen that the vortex in the 
vicinity of a hydraulic jump is located above the surface 
level of the incoming flow. By adopting partial angular 
momentum equations on water waves, based on the 
vertical flow only, the horizontal currents completely 
disappeared from the equations[2]. Hence disruptive 
effects of waves-separated from horizontal currents-
could be studied, with unexpected consequences as 
down shifting induced by dissipation as a result. In 
general, the partial equations open for studies of 
interactions between different flow regimes without 
having to adopt detailed numerical approaches. On the 
other hand, Eq. (18) appears well suited for numerical 
applications, as it is based on the pressure at the corners 
of rectangular control areas. 
 This study, as[1,2] are first and foremost written to 
establish the partial conservation concept. Hence the 
application parts are merely meant as examples. 
Probably better applications exist and it is the author’s 
belief that the partial conservation equations will turn 
out to be valuable in the future. I leave that as a 
challenge to the reader. 
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