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Abstract: It is common in hyperspectral remote sensing studies to perform analysis based on 
derivative spectroscopy. However, this technique is particularly sensitive to noise in the data. Thus, 
noise removal is essential before any derivative analysis. Various methods of noise removal are 
described in the literature. A newly developed method based on the wavelet transform appears 
promising, though there is little practical guidance on its use. In this study, the investigation of several 
important parameters that govern Wavelet-Based Denoising (WBD) is undertaken. The optimal 
parameter settings are then evaluated for use in spectral analysis using field Spectroradiometer 
hyperspectral data. 
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INTRODUCTION 

 
 Several methods have been used to smooth noisy 
signals, including the Fourier transform, the Savitzky-
Golay local polynomial, the mean filter, Gaussian 
functions, and so on. However, these methods have 
characteristics that could reduce their effectiveness in 
dealing with noisy signals. In recent years, a new method 
known as wavelet shrinkage has been introduced to the 
scientific community. It is said to offer a more efficient 
and statistically rigorous approach to signal processing. 
Among the advantages of the wavelet shrinkage method 
is that it can be used to reduce the level of noise while 
preserving the significant features of the original data[1]. 
However, practical guidance on the use of the wavelet-
based denoising is hard to find[2] and the use of wavelet 
transform in the analysis of hyperspectral data is very 
limited[3]. 
 

MATERIALS AND METHODS 
 
Wavelet-based denoising (WBD): The aim of WBD 
methods is to recover a true signal f from an 
observation vector y i  measured at n equally spaced 

points t i , with additive noise εi . The value of n 

(number of observations) is assumed to be the power of 
two. For signals not to the power-of-two sizes, zeroes 
are added to the one or both ends of the signal until the 
power-of-two size is achieved.  
 

( )fy ti ii = + ε , i = 1,2,…..n  (1) 

(Adapted from[4]). 
 The WBD procedure involves three major steps: 
forward transformation of the signal to the wavelet 
domain, wavelet coefficient reduction and 
transformation of the wavelet coefficients back to the 
original signal domain[5,6]. Several fundamental 
decisions have to be made regarding: the selection of 
the value of the threshold (t) to distinguish signal and 
noise, the mother wavelet and the choice of 
thresholding method, as well as the optimal resolution 
level or scale for diagnosing.  
 For a data series of length n the first level (n/2) 
detail coefficients are selected. The median absolute 
deviation (MAD) is calculated by (i) determining the 
median of the absolute values of the n/2 selected detail 
coefficients (MED1) and (ii) the median of the absolute 
deviations (MAD) from MED1. Following[7], a 
Universal Threshold t is defined as 
 
t 2log(n)MAD / 0.6745=  (2) 
 
where n is the data series length. This method adopts 
the ‘global’ thresholding principle in which one 
constant threshold value is used for all coefficients 
across all levels. 
 The first stage of the work involved a simulation 
study carried out using synthetic data to determine the 
factors that affect the performance of the wavelet-based 
denoising technique. This study also had the aim of 
providing practical guidance on the use of the WBD 
technique in remote sensing. Further analysis was 
carried out to determine the effects of noise removal on 
derivative analysis of field Spectroradiometer data.  
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Fig. 1: The mother wavelets used in this study 
 
 Users of the wavelet transform must specify in 
advance the nature of the filter functions that are to be 
used. These functions are known as ‘mother wavelets’, 
and they differ in terms of their symmetry and 
smoothing properties. The synthetic data were used to 
assess the effects of the use of a range of different 
mother wavelets (Daubechies 4, Daubechies 12, 
Daubechies 20, Coiflet 12, and Symmlet 4). The 
experience gained from these experiments allowed the 
specification of a number of guidelines, which were 
then used in noise removal and derivative analysis of 
the field and airborne spectroscopy data. Figure1 shows 
the shapes of the mother wavelets investigated in this 
study. 
 A second analysis investigated the properties of 
two different methods of noise thresholding, known as 
hard and soft thresholding. Thresholding is a way of 
subdividing the wavelet coefficients into two sets, one 
of which represents information while the other 
represents noise. Noise is associated with the 
coefficients with values less than the threshold. They 
are assumed to contain no important information. The 
denoised signal is constructed from the remaining 
wavelet coefficients. Soft and hard thresholding are the 
most widely used methods proposed for this purpose. In 
hard thresholding, the wavelet coefficients are 
compared to the value of the threshold. Then, all the 
coefficients that are smaller than the absolute threshold 
are eliminated or suppressed to zero. The other wavelet 
coefficients are left unchanged. 
 Thirdly, as the wavelet transform is hierarchical in 
nature, the effects of noise estimation using different 
levels of resolution were considered. The resolution 
level is also known as the decomposition level or scale. 
It refers to the level beyond which the wavelet 
thresholding is applied. For a discrete signal with finite 
length 2M, the maximum number of decomposition 
level that can be investigated is M[8]. At each 
decomposition level, a signal is decomposed into 
approximation coefficients and detail coefficients. The 
approximation signal is then iteratively processed over 
a number of stages specified. The highest or finest 
resolution level contains most of the high frequencies in 
the signal and the coarsest resolution contains the 
average of the signal. 
 

RESULTS AND DISCUSSION 
 
 In this analysis, Walker Error (WE) measure was 
employed. The WE measure was calculated by taking 

the wavelet coefficients of the raw data (f) and the 
wavelet coefficients of the denoised data (g), computing 
the sum of the absolute differences between f and g, 
then dividing this sum by n, the number of wavelet 
coefficients[9].  
 

WE = 
f g

n

−∑  (3) 

 
 In this first part of the simulation study, the effects 
of the different mother wavelets are investigated. Hard 
thresholding and resolution level of eight were used as 
the constant parameters. 
 
Effects of different wavelet bases: Figure 2 shows the 
mean WE values for three noise levels using different 
wavelets in denoising the contaminated sine wave. The 
mean WE increase as the noise level increases for all 
the wavelets. In general, Daubechies 20 wavelet gives 
the lowest WE while Symmlet 4 wavelet gives the 
highest WE.  
 
Effects of different thresholding types: After gaining 
some idea of the most suitable wavelet, the user next 
has to determine whether to use soft or hard 
thresholding. This section presents the results of an 
investigation of the influence of hard and soft 
thresholding on the denoising result. Daubechies 20 
was used as the mother wavelet on the basis of results 
reported in the preceding section, and a resolution level 
of eight was chosen. The performance of the hard and 
soft threshold techniques was investigated for a range 
of noise levels. 
 Figure 3 shows the mean RMSE and mean WE for 
the hard and soft thresholding for different noise levels 
using the Daubechies 20 wavelet. The WE increases as 
the noise level increases for both hard and soft 
thresholding, but the values of the mean WE using hard 
thresholding are significantly lower than using soft 
thresholding.  
 
The level of resolution: Another important factor to 
consider is the level of decomposition or the level of 
resolution at which the denoisingis applied. The first 
level is the finest or highest resolution and the final 
level is the coarsest or lower resolution. In this section 
the effect of varying the resolution level is investigated. 
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Fig. 2: Mean WE against different noise levels (0%, 15% and 30%) for the different mother wavelets 
 

 
 
Fig. 3: Mean WE of hard and soft thresholding for different noise levels using Daubechies 20 wavelet 
 
The constant parameters are the Daubechies 20 and 
hard thresholding for the different noise levels. The 
length of the signal is 1024 points, which means that it 
has 10 decomposition levels (from 210 = 1024). 
However, only levels one to eight are evaluated to 
avoid denoising too much into the coarser levels. 
 Figure 4 shows the trend of the WE with respect to 
different resolution levels. In general, the WE decrease 
as the resolution level increases. The lowest error is 
achieved at the resolution level of five, then the error 
begins to rise again but only slightly. This indicates 
that, in general, if an optimal resolution level is used, 
the best denoising result can be obtained (i.e. at 
resolution level of five). 
 
Application to field spectroscopy data: The field 
spectroscopy data used in this study were acquired from 
the La Mancha, Spain study site collected by using an 
ASD field Spectroradiometer. This instrument has a 
very high spectral resolution and a spectral sampling 
interval of 1 nm after processing to reflectance. A green 
vegetation spectrum obtained by field measurement 

using the ASD instrument and its first derivative 
spectrum is shown as in Fig. 5. The first derivative 
spectrum is significantly noisy which indicates that the 
reflectance spectrum itself is inherently noisy. Since the 
‘clean’ spectrum is unknown, assessment of the quality 
of the denoised or smoothed data and the resulting first 
derivative curves is subjective and based on a visual 
assessment only. 
 Based on the guidelines developed for the 
simulation study, WBD was applied for the purposes of 
noise removal and derivative analysis of the field 
spectroscopy data. The WBD method uses a 
Daubechies 20 mother wavelet and hard thresholding 
with a resolution level of five. After some 
experimentation, the Universal Threshold value was 
increased in order to remove the noise present in first 
derivative curve more effectively. Other researchers 
have also found that the Universal Threshold 
underestimates noise levels[10]. A threshold 
multiplication value of 12 was found to achieve 
satisfactory denoising and produced a relatively ‘clean’ 
first derivative result.  
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Fig. 4: Mean WE against resolution level for different noise levels 
 

 
 
Fig. 5: A green vegetation spectrum from the ASD spectral library in the range of 0.350 to 0.861 µm (left) and its 

noisy first derivative spectrum (right) 
 

 
 
Fig. 6: The wavelet-based denoised green vegetation spectrum (left) and its first derivative (right). Pseudo-Gibbs 

phenomena are seen at the ends of the derivative spectrum 
 
The first derivative spectrum derived from the denoised 
data is more easily interpreted than the equivalent first 
derivative curve derived from raw data. However, the 
WBD method suffers from the introduction of pseudo-
Gibbs phenomena[11] at the end points of the spectrum, 

which in this case is obvious in the start and end points 
of the curve. This could be the result of the 
discontinuity of the data at the end points and an 
insufficient boundary treatment algorithm currently 
being adopted by the computer program. The denoised 
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spectrum and its first derivative curve are presented in 
Fig. 6. The use of wavelet-based denoising results in 
amplified ripples at both ends of the derivative 
spectrum derived from the field Spectroradiometer. 
Nevertheless, the procedure has obviously reduced 
instrumental noise and produced a more easily 
interpretable derivative spectrum.  
 

CONCLUSION 
 
 The WBD procedure is able to reduce the amount 
of noise and help to extract important features from the 
first derivative analysis. However, the major concern 
brought out in this paper is the presence of ripples (the 
pseudo-Gibbs phenomenon) that are introduced into the 
derivative spectrum by the application of the WBD 
method. The following guidelines for the use of the 
wavelet-based denoising technique is suggested; 
Mother wavelet: the longer the wavelet filter vector the 
smoother will be the output. The selection of the mother 
wavelet should also depend on the properties of the 
input signal and on the desired outcome, Thresholding 
type: it was found that hard thresholding performs 
better than soft thresholding, Resolution level: the 
decomposition level at which denoising is applied 
should be moderate.  
 Proper treatment of the boundary problem is also 
required; otherwise the pseudo-Gibbs phenomenon  
 
will affect the usability of the results. How the ripples 
affect the entire first derivative spectrum is unknown 
but their presence are certainly quite disturbing if one’s 
aim is to obtain a smooth derivative analysis. An 
elegant way to overcome this problem is to use more 
sophisticated procedures to deal with the pseudo-Gibbs 
and boundary problems. The ability to effectively 
remove noise from hyperspectral data will facilitate 
advanced analysis to be carried out on hyperspectral 
data such as spectral derivative technique. This will 
open up new possibilities for the modeling, assessment 
and analysis of remote sensing data in many 
agricultural, environmental and engineering 
applications.  
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