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Abstract: This study focuses on the solution of implicit difference equations, which are very difficult 
to compute in parallel for the diffusion equation. For improving the convergence rates and the 
properties of gradual-approach convergence of Segment-Classic-Implicit-Iterative (SCII) and 
Segment-Crank-Nicolson-Iterative (SCNI) algorithms realizing efficient iterative computation in 
parallel by segmenting grid domains, SCII and SCNI algorithms with accelerated convergence are 
studied and improved through inserting classic implicit schemes and Crank-Nicolson schemes into 
them respectively. The SCII and SCNI algorithms with accelerated convergence, which can be 
decomposed into smaller strictly tri-diagonally dominant subsystems, are solved by using a double - 
sweep algorithm. In the present study, general structures of SCII and SCNI algorithms with accelerated 
convergence are constructed with matrix forms. The convergent rates are estimated and properties of 
gradual-approach convergence about diffusion equation are described by a splitting coefficient matrix 
in detail. These algorithms improve the convergence rates in iteration while making the properties of 
gradual-approach convergence reach two ranks. The efficiency of computation is greatly enhanced. In 
addition, the algorithms are extended to the case of two-dimensional problem by studying Peaceman-
Rachford scheme into which classic implicit schemes are inserted alternately. Numerical computations 
employing SCII and SCNI algorithms with accelerated convergence are made to SGL/Challenge L 
with 8 CPUs as examples. Theoretical analyses and numerical exemplifications show that the parallel 
iterative algorithms with accelerated convergence for solving one-dimensional diffusion equations are 
more efficient in computation and have much better convergent rates and properties of gradual-
approach convergence. 
 
Key words: Diffusion equation, parallel iterative algorithm, convergent rate, property of gradual-

approach convergence 

 
INTRODUCTION 

 
 Recently, parallel algorithms with such good 
properties such unconditional stable schemes and 
higher accuracy schemes for solving implicit difference 
equations have been improved greatly. Both ASE-I 
algorithm and ASC-N algorithms, known as segment 
implicit methods, are set up to solve different implicit 
equations[9]. They realize the principle of divide and 
rule and efficient computation in parallel by segmenting 
grid domains. It turns out that iterative methods are of 
convergent properties, which was proved by splitting 
coefficient matrix[1]. Segment Classic Implicit Iterative 
(SCII) and Segment Crank-Nicolson Iterative (SC-NI) 
algorithms for solving one-dimensional diffusion 
equation, which can be decomposed into smaller tri-
diagonal subsystems, are solved by using a double - 
sweep algorithm[8]. The convergent rate is estimated 
and the property of gradual-approach convergence 
about one-dimensional implicit difference equations is 

discussed. The algorithms can solve implicit difference 
equations and have an efficiency in parallel[2,5]. For 
improving the convergence rates and the properties of 
gradual-approach convergence of the SCII and SCNI 
algorithms, SCII and SCNI algorithms with accelerated 
convergence which can be decomposed into smaller 
strictly tri-diagonally dominant subsystems and be 
solved  by using a double-sweep algorithm are studied 
and improved through the inserting classic implicit 
scheme and Crank-Nicolson scheme into them 
respectively. General structures of SCII and SCNI 
algorithms with accelerated convergence are described 
by using matrix form. The improved convergent rates 
and properties of the gradual-approach are described by 
a splitting coefficient matrix in detail. By using the 
algorithms, it can save much time to solve implicit 
difference equations in parallel. In addition, the 
algorithms are extended to two-space dimensional 
problems by studying Peaceman-Rachford scheme into 
which classic implicit schemes are inserted alternately. 
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Finally, theoretical analysis and numerical 
exemplifications show that the parallel iterative 
algorithms with accelerated convergence are of higher 
efficiency in computation, have much better convergent 
rate and property of gradual-approach convergence. 
 
SCII algorithm with accelerated convergence: The 
problem is to find the solution of u(x,t) in the 
domain :{0 x 1, t 0}≤ ≤ >D  of: 
 

2

2

u u

t x

∂ ∂=
∂ ∂

 (1) 

 
with the boundary conditions: 
 

0 1u(0, t) g (t),u(1, t) g (t)= =  (2) 
 
and the initial condition as: 
 
u(x,0) f (x)=  (3) 
 
 Let ∆x and ∆t be the step sizes in the directions of  x 
and t, where, 1

mx∆ = , m is a positive integer. The  

approximate values uk
i of the solution u(x,t) for the 

problems (1)-(3) are to be computed at the grid points (xi, 
tk), where  xi = i∆x, for I = 0,1, …, tk = k∆t for  k =1,2...., 
For simplicity, we denote points (xi, tk) by (I, k). 
    Among the finite difference methods for the 
numerical solution of problems (1)-(3), the well-known 
classic implicit scheme is as follows: 
 

k 1 k 1 k 1 k
i 1 i i 1 iru (1 2r)u ru u+ + +
− +− + + − =  (4) 

 
Which: 
 
 2r t / x , i 1,2, ,m 1,k 0,1,2,...= ∆ ∆ = − =⋯ . 
 

0
i iu f (x )= for i 0,1, ,m= ⋯  (5) 

 
k k
0 0 k m 1 ku g (t ),u g (t )= = for k 0,1,2,= ⋯  (6) 

 
 The scheme (4) is unconditionally stable and has 
truncation error O (∆t+∆X2). 
 In order to improve the convergence rate and 
property of gradual approach convergence, the classic 
implicit difference equation can be made as follows: 
 

k 1 k 1 k 1 k
i 1 i i 2 i 1u (ru ru u ) / (1 2r)+ + +
− − −= + + +  

k 1 k 1 k 1 k
i 1 i i 2 i 1u (ru ru u ) / (1 2r)+ + +
+ + += + + +  

 
 By substituting the equations above into the 
equation (4) respectively, we have: 
 

2 2k 1 k 1 k 1 k kr r r
i 2 i i 1 i i 11 2r 1 2r 1 2ru (1 2r )u ru u u+ + +
− + −+ + +− + + − − = +  

       
2 2k 1 k 1 k 1 k kr r r

i 1 i i 2 i i 11 2r 1 2r 1 2rru (1 2r )u u u u+ + +
− + ++ + +− + + − − = +  

 The schemes above are embedded in difference Eq. 
4-6 regular. So the numerical solutions involving finite 
difference representation of the equations governing 
diffusion processes usually consist of solving (m-
1)×(m-1) system which may be written in the matrix 
form as: 
 
Auk+1 = b (7) 
 

k 1 k 1 k 1 k 1 T
1 2 m 1(u ,u ,...,u )+ + + +

−=U  
 
where, b is implicated by Uk 0 k 1g (t )+ and 1 k 1g (t )+ . 

Generally, we resort to solve (7) which is based on the 
splitting of the matrix A as follows: 
 
A = M-N (8) 
 
where,  M and Nare given respectively by: 
 

1 2 kdiag( , , , )=M A A A⋯  

1 1

1 2 22

k-2 k -1 k-1

k-1 k

H N

M H N
r

N = O O O
1+ 2r

M H N

M H

 
 
 
 
 
 
 
 

 

 
where, A1, A2,Ak,Mi and Ni  are matrices of order  m1× 
m1, mi× mi, mk×mk, mi+1× mi× mi+1 and respectively; 
and they are defined as: 
 

2

1

r
1 2r

1 2r -r

-r 1 2r -r

-r 1 2r -r

-r 1 2r +

+ 
 + 
 =
 

+ 
 + − 

A ⋱ ⋱ ⋱  

2

2

r
1 2r

i

r
1 2r

1 2r -r

-r 1 2r -r

-r 1 r -r

-r 1 2r

+

+

 + −
 

+ 
 =
 

+ 
  + − 

A ⋱ ⋱ ⋱  

2r
1 2r

k

1 2r -r

-r 1 2r -r

-r 1 2r -r

-r 1 2r

+
 + −
 

+ 
 =
 

+ 
 + 

A ⋱ ⋱ ⋱  

i

1 0

0

0

 
 
 =
 
 
 

M
⋰

, i

0

0

0 1

 
 
 =
 
 
 

N
⋰

 

 
where Hi is naught matrix for i = 1,2,..,k  and  

i
i

m m 1= −∑ with i2 m m 1≤ ≤ − . U[k+1](0) is a initial 
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vector of U[k+1], and let U[k+1](0) =U[k] in computing in 
this study. 
 By splitting off (8), a SCII algorithm with 
accelerated convergence can be expressed as: 
 
MU [k+1(+1) = NU[k+1(s)+b (9) 
 
 To balance the computing in parallel, mi for i = 1, 
2,…, k is often made equal in performing. Since Ai for i 
= 1, 2,…,k has been strictly tri-diagonally dominant and 
Ni for i = 1,2,….,k-1 has only one non-zero element, 
massive  computing in parallel about (9) is not difficult 
by parallel segmented double-sweep algorithm[7,8]. 
 
Analyses of convergent rate and property of 
gradual-approach convergence: In this section, 
stability, convergent rate and property of gradual 
approach convergence of (9) are analyzed. We firstly 
introduce a famous lemma as follows[3,4]. 
 
Lemma: If  M = (mi,j) is an n×n matrix, N = (ni,j) is an 
n×m matrix and: 
 

i,i i, j
j i

m m
≠

>∑  for i 1,2,...,n=  

 
Then: 
  

m
1

i, j i,i i, j
i

j 1 j i

max | n | / (| m | | m |)−

∞
= ≠

  ≤ − 
  
∑ ∑M N   

 
 It is easy to prove that (7) is unconditionally stable 
according to the above lemma. And the estimate result 
in the iteration of (9) is what follows: 
 

2
-1

2¥

r
M N £

1+ 3r + r
 for i1 m m 1< < −   

 
 Then, we have -1 -1

¥
ρ(M N) £ M N < 1 . So SCII 

algorithm with accelerated convergence (9) is 
convergent. Obviously, the convergence rate of (9) is 
better than that of SCII algorithm [2]. 
 The property of gradual approach convergence will 
be discussed in detail in the following. For balancing 
the  computing   in   parallel, we   suppose  Ai = Ap for  
i= 1,2,…,k. So we have: 
 

1 1 1 1
p p pdiag( , , , )− − − −=M A A A⋯  

           

-1
1 p

-1 -1
p 2 p2

-1

-1 -1
p k-1 p

-1
p k

H A N

A M H A N
r

M N = O O O
1+ 2r

A M H A N

A M H

 
 
 
 
 
 
 
 

 

 
Then: 

-1
2 p p p ¥-1

¥ -1 -1
1 p k p¥ ¥

A (M + N ) ,r
M N = max

1+ 2r A N , A M

 
 
 
  

 (10) 

 
 The result of -1

p p p ¥
A (M + N )  will be estimated in 

the following section. 
 Since 1

p 0− >A , 0≥M and 0≥N , supposing 
1

i, j p p p(x ) −
×= =X A ,Then we have: 

  

  

-1
P

1,p 1,1

2,p 2,1

p-1,p p-1,1

p,p p,1

A (M + N) = X(M + N)

0 x 0 L 0 x 0

0 x 0 L 0 x 0

M M M M=

0 x 0 L 0 x 0

0 x 0 L 0 x 0

 
 
 
 
 
 
 
 

 

 
Namely: 
 

22 1
p i,1 i,p

i

r r( ) max (x x )
1 2r 1 2r

−

∞
+ = ++ +A M N  

for i 1,2, ,p= ⋯  (11) 
 
 If denoting i,1 i,pf (i,p) x x= +  and 

T
j 1, j 2, j p, jx (x ,x , , x )= ⋯ for j = 1,2,…,p, the result of (11) 

can be obtained by solving the first and last linear 
system of: 
 

p 1 1=A X e , p p p=A X e  
 
 By Grammer’s rule, it is easy to get the two vectors 
X1 and Xp as: 
 

i 1
p ii,1 px r −

−= D D , p i
i 1i,p px r −
−= D D  for i 1,2, ,p= ⋯  

 
Where: 
 

l ldet=D A , 

2

l

r
1 2r l l

1 2r r

r 1 2r r

r 1 2r r

r 1 2r + ×

+ −
− + −

=
− + −

− + −

D ⋱ ⋱ ⋱  

2r
1 2r

l

l l

1 2r r

r 1 2r r

r 1 2r r

r 1 2r

+

×

+ − −
− + −

=
− + −

− +

D ⋱ ⋱ ⋱    

 
Then: 
 

i 1 p i
p i i 1 pf (i,p) (r r ) /− −

− −= +D D D  



American J. Applied Sci., 1 (1): 54-61, 2004 
 

57 

 Since, 2
l l 1 l 2(1 2r) r− −= + −D D D for 0 l p≤ ≤  and 

denoting 21 2r, rα + β = + αβ = and 0 1=D , then we have 
l 2 l 2 2 2

l ( ) ( )+ += α − β α − βD  

 Similar to the method above, lD  is equal to lD . So 
we have: 
   

2 2 l 3 l 3 2 2r
l 1 l 2l 1 2r(1 2r ) r ( ) ( ) ( )+ +
− −+= + − − = α − β α − β α + βD D D

 
Therefore: 
 

i 1 p i 2 p i 2 p i i 1 i 1

p 3 p 3

f (i,p) [r ( ) r ( )]

( ) / ( )

− − + − + − + +

+ +

= α − β + α − β

α + β α − β
 

 
 Taking i as continuous and differentiable in f(I,p), 
we have: 
 

, i 1 i 1 p i 2 p i 2 p 1
r r r r

p 3 p 3
r

f (i,p) [( ) ( ) ( ) ( ) ]r ( )

ln / ( )

β β+ + − + − + +α α

+ +α

= + − − α + β

α − β
 

 
 Assuming r (1 1 4r ) / 2α = + + +  which can be 

calculated by 1 2rα + β = + and 2rαβ = , it is not difficult 
to find that: 
 

 

p 1

2

p 1,
i 2

p 1

2

0,(i )

f (i,p) 0,(i )

0,(i )

+

+

+

< <
= = =
> >

 

 
 Therefore, f(I,p) is strictly decreasing when p 1

2i +<  

and strictly increasing when p 1

2i +>  for variable i. So 

f(I,p) reaches its maximum at i = 1, p and can be 
rewritten as: 
 
 

i
f (p) max f (i,p)=  

 
 Supposing p is a continuous and differentiable 
again, we have: 
 

p 3 p 3

2 2, p 3 p 3 p 2 2 r
r r r rf (p) [( ) ( ) 2( ) ( ) ]r ( ) ( ) ln 0

+ +
β β+ + +α α

α= + − α + β α − β <
 
 Hence, f (p) is strictly decreasing for variable p 
according to the above discussion. That is to say, 

1
p p p( )−

∞
+A M N decreases with the increasing of net 

point number p in each segment. We also have: 
          

α

r2
=x

-1 2 2 2p 2 2 2 p 1r
1+2r¥

p2 2 2p 2 2r

M N = f(p) = [r r x ( )x ]

/ ( x ) ( )

− − − −

→∞− −
α

− + α − β

α − β →
 (12) 

 
 In the following section, 1

1 p
−

∞
A N and 1

k p
−

∞
A M will 

be estimated. 

    Since 1
1 0, 0− > ≥A N ，and supposing 1

i, j p p 1(y ) −
×= =Y A , 

we have: 
 

    

1,p

2,p

1
1

p 1,p

p,p

0 y 0 0

0 y 0 0

0 y 0 0

0 y 0 0

−

−

 
 
 
 = =
 
 
 
 

A N YN

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯

   

 
Namely: 
  

1
1 i,p

i
max(y )−

∞
=A N  for i 1,2, ,p= ⋯       

 
 Let f(I,p)=yi,p and Yj = (y1,j,y2,j,…,ypj)

T for  i = 
1,2,..,p. We have: 
 
 1 p pA Y = e   

 
And: 
 
  p i

pi,p i 1y r −
−= G D  for i 1,2, ,p= ⋯          

 
Where: 
 

l

l l

1 2r r

r 1 2r r

G

r 1 2r r

r 1 2r ×

+ −
− + −

=
− + −

− +

⋱ ⋱ ⋱  

 
Then: 
 
    p i i i

pf (i,p) r ( ) ( ) D−= α − β α − β  

 
 Taking i as continuous in form, we have: 
 
  , i i p

pr r rf (i,p) [( ) ( ) ]r ln / ( ) / D 0βα α= + α − β >  

 
 Therefore, f(I,p) is strictly increasing about  i in 
area [1,p] and so we have: 
 

p p p 2 p 2
p 1 p

i
f (p) max f (i,p) G / D (1 2r)( ) / ( )+ +

−= = = + α − β α − β
 
 Again differentiating function f(p) for variable p, 
then: 
 

, 2p 2 2 p 2 p 2 2
rf (p) 2(1 2r)r ( ) ln / ( ) 0+ +α= + α − β α − β >  

 
 So f(p) is strictly increasing and we have: 
 

r2
x

p1 2 2p 2 2 2p 2r r
11 2r A N r (1 x / ( x ) ( )

α =
→+∞− − −

+ α∞
= − α − β →  (13) 
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 With the increasing of net point number p its 
maximum result is 2r( )α . The result of 1

1 p
−

∞
A N is less 

than 2r( )α in practical computation. 

    By a similar method of 1
1 p
−

∞
A N , we also have: 

  
2 p1 2r r

k1 2r ( )→+∞−
+ α∞

→A M  (14) 

 
 In conclusion, we have: 
 

{ }
2

-1 -1 -1 -1
p p p 1 p k p¥ ¥ ¥ ¥

r
M N = max A (M + N ) , A N , A M

1+ 2r
 

p 2r( )→+∞
α→  for im p∀ =  (15) 

 
where, r (1 1 4r ) / 2α = + + + . 

 Finally, we obtain the best result that 1−

∞
M N  

approaches 2r( )α  gradually to the increasing of net 

points in the segment. And the property of gradual 
approach convergence 2r( )α  is much better than r

α
[5,10]. 

 Therefore, we have:  
 
Theorem: Segment classic implicit iterative algorithm 
with accelerated convergence (9) for solving diffusion 
Eq. 1-3 is convergent. Its convergent rate is better than 
SCII algorithm, and the property of gradual approach 
convergence can approach2r( )α gradually with the 

increasing of net point number in each segment. 
 
SCNI algorithm with accelerated convergence: It is 
well known that Crank-Nicolson scheme of (1) has 
unconditional stability and has much better accuracy as 
follows:  
 

k 1 k 1 k 1 k k k
j 1 j j 1 j 1 j j 1ru 2(r 1)u ru ru 2(1 r)u ru+ + +
− + − +− + + − = + − +  (16) 

  
 Similar to the transfiguration of the classic implicit 
scheme, Crank-Nicolson scheme can be changed in the 
following equation: 
 

k 1 k 1 k k k k 1
j j 1 j 1 j j 1 j 1u [ru ru 2(1 r)u ru ru ] / 2(r 1+ + +

− − + += + + − + + + �  (17) 
 
 Equation (17) is appropriately substituted in (18) 
respectively in k 1

j 1u +
− and k 1

j 1u +
+ . Then we have: 

 
2 2

2 2

k 1 k 1 k 1r r
i 2 i i 12(1 r) 2(1 r)

r (1 r)k k k kr r
i 1 i 1 i i 21 r 2(1 r) 2(1 r)

u [2(1 r) ]u ru

ru [r ]u [2(1 r) ]u u

+ + +
− ++ +

−
+ − −+ + +

− + + − −

= + + + − + +
2 2

2 2

k 1 k 1 k 1r r
i 1 i i 22(1 r) 2(1 r)

r (1 r)k k k kr r
i 1 i 1 i i 21 r 2(1 r) 2(1 r)

ru [2(1 r) ]u u

ru [r ]u [2(1 r) ]u u

+ + +
− ++ +

−
− + ++ + +

− + + − −

= + + + − + +
   

 
  With a similar method of SCII algorithm with 
accelerated convergence, AUn+1 = b can be obtained and 
divided into iterative form as follows: 
 

[n+1](s+1) [n+1](s)MU = NU + b  (18) 

where, 1A , iA and kA are matrices of order order  m1× 
m1, mi× mi and mk×mk, respectively; and this matrices 
are defined as: 
 
  1 2 kdiag( , , , )=M A A A⋯  

1 1

1 2 22

k-2 k-1 k-1

k-1 k

H N

M H N
r

N = O O O
2(1+ r)

M H N

M H

 
 
 
 
 
 
 
 

 

2

1

r
2 2r

2 2r r

r 2 2r r

r 2 2r r

r 2 2r +

+ − 
 − + − 
 =
 

− + − 
 − + − 

A ⋱ ⋱ ⋱  

2

2

r
2 2r

i

r
2 2r

2 2r r

r 2 2r r

r 2 2r r

r 2 2r

+

+

 + − −
 

− + − 
 =
 

− + − 
  − + − 

A ⋱ ⋱ ⋱  

2r
2 2r

k

2 2r r

r 2 2r r

r 2 2r r

r 2 2r

+
 + − −
 

− + − 
 =
 

− + − 
 − + 

A ⋱ ⋱ ⋱  

 
 In which, the structure of Ni and Mi are similar to 
(8); Hi is the zero matrix for I =1, 2,…, k-1; and 

k

i
i

m m 1= −∑  with i2 m m 1≤ ≤ − . AUk+1 = b is stable if 

r 1≤ according to the above lemma. The estimate of 
convergent rate and property of gradual approach 
convergence is given by: 
 

2
1

2

r

4 6r r

−

∞
≤

+ +
M N  for i1 m m 1< < −  (19) 

 
1 p 2r( )

− →∞
α

∞
→M N  for im p∀ =  (20) 

 
where, 1 r 1 2rα = + + + . 
 Obviously, SCNI algorithm with accelerated 
convergence (18) is convergent ifr 1≤ . In addition, its 
convergent rate, property of gradual approach 
convergence and accuracy are much better than those of 
SCII algorithm with accelerated convergence. 
 
A Parallel iterative algorithm with accelerated 
convergence for two-dimensional problems: The 
problem is to find the solution u (x, y, t) in the domain 

:{0 x 1,0 y 1}≤ ≤ ≤ ≤D  of: 
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2 2

2 2

u u u

t x y

∂ ∂ ∂= +
∂ ∂ ∂

 (21) 

 
with the boundary conditions: 
 

1u(0, y, t) f (y, t)= ,  2u(1, y, t) f (y, t)=   

3u(x,0, t) f (x, t)= ,  4u(x,1, t) f (x, t)=  (22) 

 
and the initial condition: 
 
u(x,y,0)=f(x,y) (23) 
     
 Let ∆x, ∆y and ∆t be the grid spaces in the x,y and 
t directions; where x 1 / m∆ = and ∆y = 1/n in which m 
and n are positive integers. The approximate value k

i, ju  

of the solution u(x,y,t) for the problems above are to be 
computed at the grid points (xi, yj, tk), where : 

ix i x= ∆ for i 0,1, ,m= ⋯ , jy j y= ∆ for j 0,1, ,n= ⋯ and

kt k t= ∆ for k = 0,1,... For simplicity, we 

take x y h∆ = ∆ =  and t∆ = τ , where h  = 1/m. And 
sometimes denote points (I, j, k) by (xi, yj, tk). 
 Among the finite difference method for the 
numerical solution above, the well-known Peaceman-
Rachford scheme is unconditionally stable and has 
truncation error 2 2( t x )Ο ∆ + ∆ as follows: 
 

1 1 1
2 2 2

1 1 1 1
2 2 2 2

k k k
i 1, j i, j i 1, j

k k k k
i, j i, j 1 i, j i, j 1

k 1 k 1 k 1
i, j 1 i, j i, j 1

k k k k
i, j i 1, j i, j i 1, j

ru (1 2r)u ru

u r(u 2u u )

ru (1 2r)u ru

u r(u 2u u )

+ + +
+ −

+ −

+ + +
+ −

+ + + +
+ −

 − + + −

 = + − +


− + + −
= + − +

 (24) 

 
with the boundary conditions: 
 

k
0, j 1u f ( j,k)= , k

1, j 2u f ( j,k)=   

 
k
i,0 3u f (i,k)=  k

i,1 4u f (i,k)=  (25) 

 
for I, j =0,1…m and the initial condition: 
 

k
i, ju f (i, j)=  for  I, j =0,1,…m (26) 

 
where, 2/ h rτ = . 
 So the difference Eq, 24-26 for the Eq. 21-23 
consist of solving (m-1)×(m-1) system, which can be 
written in the matrix form as: 
 

1
2k +

j 1
k+1
i 2

AU = b

AU = b





 (27) 

 
where, A is defined as: 

1 2r r 0

r 1 2r r

r 1 2r r

0 r 1 2r

+ − 
 − + − 
 =
 

− + − 
 − + 

A ⋱ ⋱ ⋱  

k k k k T
j 1, j 2, j m 1, jU (u ,u ,...,u )−=  for j 1,2, ,m 1= −⋯   
k k k k T
i i,1 i,2 i,m 1U (u ,u ,...,u )−=  for i 1,2, ,m 1= −⋯   

 
 It is well known that Peaceman-Rachford schemes 
can be divided into two processes in alternate 
directions. So parallel iterative algorithm with 
accelerated convergence of (21)-(23) can be expressed 
as: 
 

1 1
2 2[k ](s 1) [k ](s)

j j 1
[k 1](s 1) [k 1](s)
i i 2U

+ + +

+ + +

 = +


= +

MU NU b

MU N b
 (28) 

 
where, M and N are defined as (11). By a similar 
method in one-dimensional problems, the convergence 
rate and property of gradual approach convergence are 
estimated as follows: 
 

1
2

2
[k+ ]-1

1 1 2¥

2
[k +1]-1

1 1 2¥

r
M N £

1+ 3r + r

r
M N £

1+ 3r + r







for 1<mi<m-1 (29) 

 
1
2

[ k ] p1 2r

[ k 1] p1 2r

( )
for

( )

+ → ∞−
α∞

+ → ∞−
α∞

   →

   →

M N

M N
 

im p∀ = and 1 1 4r
2r + +α = +  (30) 

 
 It is not difficult to see that parallel iterative 
algorithm with accelerate convergence (28) for two-
dimensional problems are convergent. In addition, it 
has a better convergent rate and property of gradual 
convergence than those of parallel iterative algorithm 
about two-dimensional diffusion problem[5]. Thus, the 
parallel iterative method with accelerated convergence 
for one-dimensional problem is extended to the 
computation of multi-dimensional problem.  
 

RESULTS 
 
Numerical examples and numerical results: 
One-dimension example: Consequently, numerical 
experiments are made for problems of (1)-(3) in which: 
 
f (x) 4x(1 x)= − , 0 1g (t) g (t) 0= =   
 
 The exact solution of the problem is: 
 

2 23 k t 3

k 1,3,5,

U(x, t) 32 e sin(k x) k
∞

− π

=

= π ⋅ π∑
⋯
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Table 1: Numerical results of SCII algorithm with Accelerated Convergence (SCII.AC) and SCNI algorithm with Accelerated Convergence 
(SCNI.AC) 

  r = 10, ∆ = 10, ∆x = 0.01, k = 200, error = 10−8 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
  Uk

i (10−1)   AE(10−4)   PE(10−4)   
  ------------------------------------- ------------------------------------ -------------------------------- 
xi  U(10-1) SCII.AC   SCNI.AC    SCII.AC   SCNI.AC    SCII.AC   SCNI.AC  
0.1 2.67084 2.67218 2.67170 1.34212 0.86076 5.02508 3.22281 
0.2 5.04109 5.04260 5.04178 1.50410 0.69047 2.98368 1.36969 
0.3 6.87319 6.87433 6.87362 1.13072 0.42760 1.64511 0.62213 
0.4 8.01911 8.01978 8.01933 0.67003 0.22392 0.83554 0.27924 
0.5 8.40767 8.40816 8.40783 0.48855 0.16352 0.58108 0.19449 
0.6 8.01911 8.01978 8.01933 0.67003 0.22392 0.83554 0.27924 
0.7 6.87319 6.87433 6.87362 1.13072 0.42760 1.64511 0.62213 
0.8 5.04109 5.04260 5.04178 1.50410 0.69047 2.98368  1.36969 
0.9 2.67084 2.67218 2.67170 1.34212 0.86076 5.02508 3.22281 
 
Table 2: Iterative degrees of SCII algorithm and SCII algorithm with accelerated convergence (SCII.AC) 

    r = 10, m = 100, k = 200, error = 10−8, is the iterative degree 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
p 3 5 10 20 25 50   
SSCII 14 11 8 4 2 1   
SSCIIAC 7 5 4 2 1 0 
 

Table 3: Numerical results of two-dimensional parallel iterative algorithm with accelerated convergence 

  r = 1.0, ∆x = ∆y = ∆y = 0.01, x = 0.5, k = 1000 error = 10−8 

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
y       0.1       0.2       0.3        0.4       0.5        0.6       0.7        0.8       0.9  
U(10-1) 0.40824 0.77653 1.06881 1.25646 1.32112 1.25646 1.06881 0.77653 0.40824 
Uij

k (10-1)  0.40810 0.77625 1.06842 1.25601 1.32064 1.25601 1.06842 0.77625 0.40810 
AE(10-4) 1.46697 2.79034 3.84058 4.51488 4.74722 4.51488 3.84058 2.79034 1.46697 
PE(10-3) 3.59332 3.59332 3.59332 3.59332 3.59332 3.59332 3.59332 3.59332 3.59332 

 

 The numerical results are shown in Table 1 by 
putting the Absolute Error (AE): 
 

k k k
i i iAE e u U= = −  

 
and Percentage Error (PE):  
 

k k k
i i iPE R e U 100%= = ×  

 
at each point along the mesh line, where u and U are 
numerical solutions and exact solutions respectively. 
The numerical results of SCII and SC-NI algorithms 
with accelerated convergence obtained in 
SGL/Challenge L with 8 CPUs for these methods are 
more accurate in computing in parallel. It is shown in 
Table 2 that the iterative degree of SCII algorithm with 
accelerated convergence is less than that of SCII 
algorithm and it decreases with the increasing of net 
point number in each segment (Table 3). 
 
Two-dimension example: In closing, we give the 
numerical experiment made for the problem (21-23), in 
which: 
 
 f (x, y) sin xsin y= π π               

 1 2f (y, t) f (y, t) 0= = ， 0 y 1≤ ≤ , 0 t T≤ ≤    

 3 4f (x, t) f (x, t) 0= = ， 0 x 1≤ ≤ , 0 t T≤ ≤    

 The exact solution of the problem is:  
 

22 tU(x, y, t) e sin xsin y− π= π π  

 
CONCLUSION 

 
 By reconstructing differential equations, the SCII 
algorithm with accelerated convergence for solving 
one-dimensional diffusion equation is developed in this 
study. It is convergent in iteration and has a better 
convergent rate and property of gradual approach 
convergence than those of SCII algorithm. Furthermore, 
the SC-NI algorithm with accelerated convergence is 
discussed. The convergent rate, property of gradual-
approach convergence and accuracy are much better 
than those of SCII algorithm with accelerated 
convergence. In addition, the algorithm is tended to 
two-space dimensional problem by studying Peaceman-
Rachford schemes.  
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