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ABSTRACT 

Cadmium (Cd) is a toxic heavy metal whose concentration in soils is rising. This study investigated the 

effect of transpiration on Cd uptake by plants using soil conditions akin to those experienced by field crops. 

Two experiments were performed using baby leaf spinach (Spinacia oleracea L.) grown in soil containing 

Chloride (Cl) at a typical concentration of 70 mg kg
−1

. Experiment 1 explored plant response to Cd over the 

range ~0.04 to 10 mg kg
−1 

so that a non-toxic concentration could be selected for Experiment 2. Experiment 

2 tested the hypothesis that transpiration and Cd uptake were related using soil amended to 70 mg Cl kg
−1

 

and 0.24 mg Cd kg. Differences in transpiration were achieved by manipulating atmospheric CO2 (~400 and 

~640 µL CO2 L
−1

) and air temperature (22/14, 26/18 and 30/22°C day/night). In Experiment 1, Cd in the 

foliage variedfrom ~2 to ~100 mg kg
−1

 DW, yet there was no evidence of Cd toxicity. In Experiment 2, 

temperature and [CO2] caused large differences in plant growth. [Cd] was lower in chambers with increased 

temperature and higher in those with elevated CO2. Despite differences in growth, transpiration and foliar 

Cd uptake were positively and strongly correlated, even when both parameters were expressed on a DW 

basis. The data are consistent with Cd transport by mass flow towards the roots being a substantial 

contributor to Cd uptake. Higher [Cd] at elevated CO2 raises concerns about future chronic dietary exposure 

to Cd. The findings challenge the interpretation of earlier studies on the effects of CO2 and temperature on 

Cd uptake and may partly explain the inter-seasonal variation in Cd uptake by field crops. 
 
Keywords: Transpiration, Chloride, Elevated CO2, Temperature, Canopy Area 

1. INTRODUCTION 

Plants contribute a large proportion of our dietary 

Cadmium (Cd), which is perhaps the heavy metal of 

most concern for human health (Clemens et al., 2013). 

Discharges of Cd into the environment have increased 

due to increases in industrial activity and to Cd-

contamination of phosphorus fertilizers (Williams and 

David, 1976). Phosphorus fertilizers have been used in 

many countries to increase the productivity of 

horticulture and agriculture (Chen et al., 2011) and are 

a major source of Cd in farmed soils worldwide; 

Australian soils are no exception (Andrews et al., 1996; 

Jinadasa et al., 1997). As a result, chronic Cd toxicity 

in humans, through continued low-level dietary 

exposure, is a global health concern and the selection of 

crop plants with low Cd uptake has become a focus of 

activity (Clemens et al., 2013). However, gaps remain 
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in our understanding of the effects of edaphic and 

environmental factors on Cd uptake by plants. 
Transpiration causes water and solutes to flow towards 

the roots of plants (Salt et al., 1995); consequently, 
influences on transpiration have the potential to affect Cd 
uptake. Were such influences to also affect plant Dry 
Weight (DW), the association between transpiration and Cd 
uptake might be stronger than that between Cd 
concentration and transpiration/unit mass; however, 
evidence for this appears conflicted. For example, the 
amount of Cd in the tops of bush beans (Phaseolis vulgaris 
L.) grown in a liquid culture was proportional to the 
amount of water transpired (Hardiman and Jacoby, 
1984), as was the uptake of Cd from soil by radish 
(Raphanussativus L.) (Lorenz et al., 1994; Kashem 
and Singh, 2002). In contrast, Florijn and van Beusichem 
(1993) found no relationship between shoot Cd and 
transpiration in pot experiments with high and low Cd-
accumulating lines of maize (Zea mays L.) and similar 
results were obtained for radish and soybean (Lagerwerff 
and Biersdorf, 1972; Cunningham et al., 1977). Likewise 
Greger et al. (2003) (unpublished results, cited by (Ekvall 
and Greger, 2003) found that Cd translocation to the 
shoot of willow (Salix viminalis L.) was not affected 
by transpiration rate. However, the results of some of 
these studies are possibly complicated by the effects 
of Cd toxicity on water relations (Poschenrieder et al., 
1989; Perfus-Barbeoch et al., 2002); moreover, the 
role of transpiration rate in Cd transport in the xylem 
is contested (Salt et al., 1995; Hart et al., 1998). 

The atmospheric Carbon Dioxide (CO2) 
concentration is expected to exceed 600 µL L

−1
 during 

the 21st century, leading to a global mean surface 
temperature warming of 1.9-4.4°C (Solomon et al., 2007) 
and CO2 concentration and temperature are among the 
factors that drive transpiration. Elevating the 
atmospheric concentration of CO2 increases the rate of 
photosynthesis of C3 plants by enhancing CO2 fixation 
and suppressing photorespiration (Drake et al., 1997). 
Under most conditions, elevated CO2 also reduces 
stomatal conductance and, hence, leaf transpiration rates 
(Ainsworth and Rogers, 2007; Drake, 2014). In addition, 
elevated CO2 can cause morphological changes that 
impact on transpiration, e.g., specific leaf weight and 
stomatal index (Poorter and Navas, 2003). Temperature 
directly affects leaf transpiration because stomatal 
conductance exhibits a thermal optimum and indirectly 
because the leaf-to-air vapour pressure deficit increases 
exponentially with increasing temperature, causing changes 
in leaf transpiration that often overwhelm any direct effects 
on stomata (Farquhar and Sharkey, 1982). Photosynthesis 
and plant growth have temperature optima and increases in 
temperature beyond the thermal optimum have negative 

effects on both leaf and plant productivity (Berry and 
Björkman, 1980; Kubien and Sage, 2008). 
Consequently, varying the atmospheric concentration 
of CO2 and the temperature provide a convenient 
means of manipulating transpiration. However, 
elevated CO2 per se may influence the mobility of Cd 
in the rhizosphere (Li et al., 2014). 

The potentially variable effects of atmospheric CO2 
concentrations on transpiration noted above may be the 
source of much of the difference between studies in the 
effect of CO2 on Cd uptake. For example, elevated CO2 
decreased the concentration of Cd in the roots and shoots 
of Lolium spp. and ameliorated Cd toxicity but did not 
affect transpiration (Jia et al., 2010). However, CO2 
effects on transpiration are not generally reported and 
differences in transpiration may lie behind the reported 
differences in Cd uptake between cultivars within studies 
(Li et al., 2014) and between studies (Guo et al., 2011). 
An alternative explanation for such contrasting results 
may be that elevated CO2 influences either root uptake of 
Cd (Li et al., 2014) or its internal (re) distribution. In 
contrast, temperature appears to affect plant Cd more 
consistently. For example, increasing temperature 
increased Cd uptake by the excised roots of barley 
(Hordeum vulgare L.) (Cutler and Rains, 1974). 
Similarly, increased temperature increased Cd uptake 
by soybeans (Glycine max L.) (Haghiri, 1974) and 
ryegrass (Lolium multiflorum Lam.) (Almas and Singh, 
2001) grown in soil in the greenhouse; however, in these 
studies the effect attributed to temperature would have 
included any concomitant effect on transpiration. 

The greater the transpiration rate, the greater the 

potential delivery of Cd to the roots by mass flow. Chloride 

(Cl) is predicted to facilitate this process by increasing the 

concentration and mobility of Cd in the soil solution due to 

the formation of chlorocomplexes (Boekhold et al., 1993; 

Kamewada and Nakayama, 2011). Moreover, Cl occurs 

ubiquitously in soils (Ure and Berrow, 1982) and the 

predicted enhancement of Cd uptake is well 

established (Bingham et al., 1983; McLaughlin et al., 

1997; Wu et al., 2002). The chloro complexes 

dissociate rapidly and complexes with this 

characteristic may also increase Cd uptake by 

decreasing the effective thickness of the diffusion 

boundary at the root (Degryse et al., 2012). Lastly, 

variation of Cd uptake with transpiration could underlie the 

seasonal variation observed in Cd uptake/concentration by 

crops (Andersson and Bingefors, 1985); although 

transpiration may play a secondary role in the accumulation 

of Cd in grain (Hart et al., 1998). 

This study tested the transpiration/uptake hypothesis 

in the greenhouse using soil conditions that mimic those 
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onlarge tracts of agricultural land, i.e., a non-phytotoxic 

concentration of Cd (Clemens et al., 2013) and of Cl 

(Ure and Berrow, 1982; Jinadasa et al., 1997). The plant 

model was the C3 species, baby leaf spinach (Spinacia 

Oleracea L.) and the atmospheric CO2 concentration and 

the temperature were varied to manipulate transpiration. 

2. MATERIALS AND METHODS 

2.1. Plant Culture and Growth Conditions 

A sandy-loam soil was collected from Menangle, 

NSW, Australia, air-dried and sieved (5 mm). The soil 

was of low fertility: pH in water (6.0), organic matter 

(0.1%), total-N (0.06%), Olsen-P (2 mg kg
−1

) and 

exchangeable cations (5.6 cmolc kg
−1

), Cl (15 mg kg
−1

). 

This soil was used in two experiments and, for both, 

5,000±5 g was weighed into a series of plastic bags. The 

required volume of a solution of calcium chloride 

dihydrate (15 g L
−1

) was added to increase the background 

Cl concentration to ~70 mg kg
−1 

of air-dry soil. This 

concentration is close to, but below, the ‘world median’ of 

~100 mg kg
−1

 (Ure and Berrow, 1982) and likewise is 

below the median of 90 mg kg
−1 

for soils from 29 farms in 

Greater Sydney, Australia (Jinadasa et al., 1997). The 

natural Cd concentration was low (~0.04 mg kg
−1

) and 

was augmented by adding aliquots of a solution of Cd 

chloride (100 mg Cd L
−1

) to the soil. The contents of 

the bag were mixed and the bag was placed in a pot. 

Seeds of two cultivars of baby leaf spinach, Racoon and 

Donkey (Rijk Zwaan Australia), were sown into 

separate pots (15seeds per pot). Baby leaf spinach was 

used as the plant model as it is a known Cd 

accumulator (Liang et al., 2013), is a small plant with 

rapid vegetative growth and the leaves and petioles are 

eaten in salads (Rogers et al., 2008). The numbers of 

pots and amounts of Cd added are described under 

Experiments 1 and 2 in the following paragraphs. Both 

experiments were conducted in greenhouses located at 

Richmond, NSW, Australia (150° 45’ E, 33° 36’ S). 

Experiment 1 defined the range of soil Cd 
concentrations across which baby leaf spinach cvv. 
Racoon and Donkey did not exhibit symptoms of Cd 
toxicity. The toxicity indices used were the fresh and 
dry weight of the foliage (Kastori et al., 1992; Perfus-
Barbeoch et al., 2002). Forty four pots were randomly 
allocated among the two cultivars and 11 different Cd 
concentrations (background ~0.04 mg kg

−1
 soil and 

background plus 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 and 10 
mg Cd kg

−1
 soil), i.e., there were two pots per treatment. 

The day/night temperature regime was 26/18°C and the 

light was natural, with an average photon flux density at 
midday of ~1500 µM m

−2 
s
−1

 and a photoperiod of~13 h. 
The relative humidity was ~50% and the CO2 partial 
pressure was ambient (~400 µL L

−1
). 

Experiment 2 tested the transpiration/uptake 
hypothesis using the same concentration of Cl as in 

Experiment 1 (~70 mg kg
−1

 soil) and a Cd concentration 
of 0.24 mg kg

−1
 soil. This soil Cd concentration was non-

toxic in Experiment 1. Nonetheless, similar 
concentrations of Cd in soil can cause concentrations of 
Cd in some leafy vegetables that are deemed 
unacceptable for human consumption (Jinadasa et al., 

1997; FSANZ, 2005; McLaughlin et al., 2006). Sixty 
pots, 30 of each cultivar of baby leaf spinach, were 
randomly allocated among six combinations of three 
temperature and two atmospheric CO2 treatments and 
each of the six combinations was allocated to a separate 
greenhouse chamber. That is, there were five pots per 

treatment. The three temperature regimes were 22/14°C, 
26/18 and 30/22°C (day/night)-the highest being above 
the temperature optimum for growth (Rogers et al., 
2008; Koike et al., 2011)-and the two CO2 concentrations, 
ambient and elevated, were 400 and 640 µL L

−1
, 

respectively. The CO2 was supplied from high pressure 

cylinders (Food grade, Air Liquide, Australia). The gas was 
scrubbed to eliminate any ethylene contamination 
(Chemisorbant Media Product 5050 CHMBX, Purafil 
Australia) before being injected into the chambers 
through solenoid valves controlled by CO2 monitors 
(Lambda T, ADC Bio Scientific Ltd., Hoddeston, UK). 

The CO2 concentrations were independently monitored 
(Model DL2e, Delta-T Devices Ltd, Cambridge, UK). 
All the monitors were calibrated using pure N2 and two 
certified CO2 calibration gases (406±12 and 714±16 µL 
L
−1

; AirLiquide, Australia). 

2.2. Management and Observations 

In both experiments, pots were randomly allocated 
positions on the greenhouse bench and were re-
randomised weekly. To minimise radiant heating of the 
soil, the sides of the pots were shielded from direct 
sunlight and the bench tops were wire mesh. Two weeks 
after sowing, the number of seedlings was reduced to 
five per pot. Water was applied on demand to 60% field 
capacity and a dilute nutrient solution was added weekly. 
(Nutrient sufficiency was confirmed by tissue analysis as 
described below.) Six weeks after sowing, the aerial 
biomass was harvested from each pot and the leaf blades 
were separated from the stems and petioles. These 
components were weighed at harvest (FW) and 
reweighed after Drying at 60°C overnight (DW). Within 
each pot, dry leaf blades were composited, ground and 
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analysed for a complete suite of nutrient elements and 
for Cl and Cd. Additional observations during the second 
experiment included: Conductance of the three, 
youngest, fully-expanded leaves per pot measured under 
growth conditions using a steady state diffusion 
porometer (Model SC-1, Decagon Devices, Washington 
State, USA); and leaf canopy area, measured using a 
portable leaf area meter (Model LI-3100A, LI-COR, 
Lincoln, NE, USA). Canopy transpiration rate was 
calculated from these values. Lastly, the roots were 
washed out and their FW and DW recorded. The 
conductance data for cv. Racoon at ambient CO2 and the 
highest temperature regime (30/22°C day/night) were not 
repeatable and were consequently rejected. 

Dried foliage from every pot in both experiments was 

ground and a subsample digested in nitric acid and 

hydrogen peroxide for mineral analysis using 

Inductively Coupled Plasma (ICP) optical emission 

spectroscopy (Wheal et al., 2011). The elements 

determined were: B, Ca, Cd, Cu, Fe, K, Mg, Mn, Na, 

P, S, Ti and Zn. Separate subsamples were analysed 

using a dedicated analysers: For N by combustion and 

gas analysis (Leco, Michigan, USA) and for Cl by 

titration with coulometrically generated silver ions 

(Sherwood Scientific, Cambridge, UK). Soil digests in 

HNO3 and HCl were analysed for Cd using ICP mass 

spectrometry. Data quality was assured by parallel 

analysis of reference samples and the use of titanium 

as an indicator of soil contamination of plants 

(Robinson et al., 1984; Cook et al., 2009); on these 

criteria, the Cd data for 8 of the 104 plant samples 

were excluded from further consideration. 

2.3. Statistics 

Cd uptake from the first experiment was analysed 

using ANOVA in Statistica (Version 9, Stat Soft Inc.), 

with effects of Cd concentration (12 levels) and 

cultivar (and their interaction). A square root function 

was used to describe the relationship between Cd 

uptake and Cd concentration. 

For experiment 2, since there is no replication of 

environmental conditions (CO2 x T), mean (+/-SE) dry 

weights, canopy area and Cd concentrations are 

presented for each of the six chambers and no formal 

statistical testing of the effects of CO2 or temperature 

was performed. The relationship between mean Cd 

uptake and mean transpiration rate per chamber and 

cultivar was examined, both on a total plant basis and on 

a mass basis. Each model comprised effects of (linear) 

transpiration rate, cultivar and its interaction. 

3. RESULTS 

3.1. Plant Management 

In both experiments, the foliar nutrient concentrations 
were: 35-50 mg kg

−1 
B, 0.65-0.8% Ca, 12-22 mg kg

−1 
Cu, 

250-600 mg kg
−1 

Fe, 5.4-7% K, 1.7-2.2% Mg, 320-410 
mg kg

−1 
Mn, 4.7-5.1 N, 0.6-0.8 Na, 0.35-0.45 P, 0.25-

0.33% S and 30-50 mg kg
−1

 Zn. 

3.2. Experiment 1 

For both cultivars, increasing the concentration of Cd 

from about 0.04 to 10 mg kg
−1

 of soil increased the foliar 

Cd concentration from ~1 to ~100 mg kg
−1

 DW (Fig. 1). 

Even at the maximum concentration of Cd, no foliar 

symptoms of toxicity were expressed. The mean FW per 

plant of both Racoon and Donkey was similar (F(1,23) = 

0.0003; P = 0.99), as was the mean DW (F(1,23) = 0.078; P = 

0.78). The large range of soil Cd concentrations (0.04-10 

mg kg
−1

) did not affect either FW or DW (F(11,23) = 0.89 

and 0.74; P = 0.56 and 0.68); consequently, the value of 

FW/DW remained constant at ~12:1 throughout. 

3.3. Experiment 2 

For the DW components, there was little difference 

between the cultivars and the highest temperature regime 

depressed plant DW (Fig. 2). The adverse temperature 

effect was expected, because the highest temperature 

exceeded the optimum for baby leaf spinach (Rogers et al., 

2008; Koike et al., 2011). Elevated CO2 increased DW at all 

temperatures; however, the increase was minimal at the 

highest temperature (Fig. 2). Interestingly, the concentration 

of Cd increased at elevated CO2 and decreased at the 

highest temperature and the canopy transpiration rate 

varied widely from 0.47-6.66 m moL s
−1 

(Fig. 3). The 

two highest transpiration rates occurred at elevated CO2 

in the two lower temperature regimes (Fig. 3). 
The Cd uptake by the canopy and canopy transpiration 

rate for the two cultivars (Fig. 4) can be described by a 

linear relationship, since there were no cultivar (P = 0.36) or 

cultivar by transpiration rate (P = 0.61) effects. The 

relationship (r
2
 = 0.77, P<0.001) is Equation 1: 

 

( ) ( ) { }1.76 1.13 1.78 0.33Cd uptake Transpiration rate= + ×  (1) 

 
where, the units of Cd uptake are mg and of canopy 

transpiration rate are mmoL s
−1

 and the values in 

parentheses are standard errors. That is, there is a 

strong, positive relation between transpiration and Cd 

uptake that strongly supports the transpiration/uptake 

hypothesis. 
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Fig. 1. The concentration of Cd applied to the soil and the concentration measured in the dry foliage of Racoon (closed circles) and 

Donkey (open circles) in Experiment 1. The trend line is a visual aid 

 

 
 
Fig. 2. Mean dry weight of the components of baby leaf spinach cvv. Racoon and Donkey grown at two atmospheric concentrations 

of CO2 in combination with three temperature regimes in Experiment 2.The error bars are SEs, showing the variation 

between the 3-5 plants within the chamber for each cultivar 
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Fig. 3. Mean canopy area (a), lamina Cd concentration (b), stomatal conductance (c) and canopy transpiration (d), for baby leaf 

spinach cvv. Racoon and Donkey at two atmospheric concentrations of CO2 in combination with the three temperature 

regimes in Experiment 2. Note that reliable conductance data could not be obtained for cv. Racoon at ambient CO2 and the 
highest temperature regime (30/22°C day/night). The error bars are SEs, showing the variation between the 3-5 plants within 

the chamber for each cultivar 
 

 
 
Fig. 4. Relation between Cd uptake and canopy transpiration rate in Experiment 2. Raw data are from Fig. 2 and 3. The fitted line is 

described by Equation 1 
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However, plant DW and canopy area are strongly 
associated in this experiment (r

2
 = 98); consequently, to 

avoid the potential effect of this association on the 
strength of hypothesis testing using the preceding 
relationship, we also compared the concentration of Cd 
in the leaves on a DW basis with the canopy transpiration 
rate expressed on the same basis (Fig. 5). As for the 
previous model, there were no significant effects of 
cultivar (P = 0.44) or cultivar by transpiration (P = 0.46) 
and the linear relation describing these data is (r

2
 = 0.56, 

P = 0.0079) Equation 2: 
 

( ) ( )

{ }

5.90 0.93 0.83 0.24Cd concentration

Transpiration rate

= +

×

 (2) 

 
where, the units of the Cd concentration are µg g

−1
 and 

of transpiration rate are mmoLg
−1

s
−1

; again, the values in 
parentheses are standard errors. 

4. DISCUSSION 

None of the nutrient concentrations in either of the 

two experiments were growth limiting for spinach 

(Reuter and Robinson, 1997) and this is presumed to 

apply to baby leaf spinach, for which no definitive data 

were found. The concentration of Cl was 1.8-2.3%, 

which is unlikely to be toxic (Marschner, 1993) and 

there were no foliar symptoms of Cl toxicity. 

Consequently, it is unlikely that the plants suffered 

mineral stress. Since water was supplied on demand, 

the effects of the Cd challenge were not confounded 

by either malnutrition or drought. 

In Experiment 1 exploring plant response to Cd over 

the range ~0.04 to 10 mg kg
−1

, neither growth nor 

water relations showed any evidence of Cd toxicity 

(Poschenrieder et al., 1989; Kastori et al., 1992; 

Perfus-Barbeoch et al., 2002). In all the preceding 

respects, the behaviour of the cultivars was 

indistinguishable, both being Cd tolerant and 

relatively strong Cd accumulators, characteristics that 

are well-known for spinach (Kuboi et al., 1986). 

We estimated complexation of Cd by Cl in the soil 

solution (GEOCHEM-EZ, Shaff et al., 2010), because 

the chlorocomplexes of Cd are more mobile by mass 

flow than Cd itself (Boekhold et al., 1993; Kamewada 

and Nakayama, 2011). There were two assumptions: 

(1) The Cl concentration was fixed at 100 mg L
−1

; and 

(2) that no other ligands of significance were present. For 

orders of magnitude variations in the concentration of Cd in 

solution relevant to soil solutions (0.1-100 µg L
−1

), the 

proportion estimated to be present as chlorocomplexes 

varied relatively little (40-15%), which is informative if not 

unexpected (McLaughlin et al., 1997; Kamewada and 

Nakayama, 2011). That is, these calculations suffice to 

show that under our conditions, an appreciable 

proportion of the Cd in the soil solution should have 

been mobile by mass flow. 

The cause of the curvature in the relation between the 

concentration of Cd in the soil and that in the plant (Fig. 

1) can only be speculative; however, two potential 

causes should not go unremarked. That is, as Cd 

concentrations increase, the speciation calculations 

reveal that the proportion of Cd present as 

chlorocomplexes declines as noted previously and, in 

addition, the root uptake mechanism may become 

partially saturated (Degryse et al., 2012). 

Notwithstanding the mechanism underlying this 

curvature, the data show that a soil Cd concentration 

of ~0.3 mg kg
−1

 was sufficient for the foliar 

concentration of Cd to be readily measured (Fig. 1) 

and this concentration was definitely not phytotoxic. 

Furthermore, similar concentrations of Cd in 

Australian soils are associated with appreciable Cd 

concentrations in leafy vegetables (Jinadasa et al., 

1997; McLaughlin et al., 2006). Consequently, in 

Experiment 2, we used the same soil at a Cd 

concentration of ~0.3 mg kg
−1

 and a Cl concentration of 

~70 mg kg
−1

 to test the transpiration/uptake hypothesis 

in a manner that is broadly relevant to field crops. 

Experiment 2 tested the hypothesis that transpiration 

and Cd uptake were related and the data strongly 
supported this hypothesis. It is unsurprising that Cd 
uptake increased with increasing transpiration in our study 
and that on bush beans in nutrient solutions (Hardiman and 
Jacoby, 1984), since both studies allowed Cd to move 
towards the roots by mass flow (Salt et al., 1995). 

Lorenz et al. (1994); Kashem and Singh, 2002) 
obtained similar results for Cd with radish grown in 
soils. Consequently, the contrasting results from other 
studies cited in the Introduction may be related to the 
use of conditions atypical of many agricultural soils or 
to interspecific differences. In addition, transpiration 

and the uptake of nitrate, which is mobile in the soil 
solution by mass flow, enjoy a strong, positive 
association under different atmospheric CO2 
concentrations and air temperatures (McDonald et al., 
2002; Sherwin et al., 2013). Therefore, transpiration-
driven mass flow of water and dissolved solutes 

constitutes a plant uptake pathway that may not have 
been given due attention.  
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Fig. 5. Relation between leaf transpiration rate and Cd uptake on a mass basis. The bars represent standard errors. The fitted line is 

described by Equation 2 
 

5. CONCLUSION 

This study shows that Cd uptake and transpiration are 

strongly and positively related for baby leaf spinach 

under soil conditions that mimic those in many cropping 

soils and the findings are consistent with Cd transport by 

mass flow towards the roots being a substantial 

contributor to Cd uptake. In addition, the study also 

showed that elevating the atmospheric concentration of 

CO2 tended to increase plant Cd concentrations raising 

concerns about future chronic dietary exposure to Cd. 

The findings challenge the interpretation of some earlier 

studies of the effects of CO2 and temperature on Cd 

uptake and may also explain at least part of the inter-

seasonal variation in Cd uptake by field crops. 

Consequently, there may be merit in investing more 

broadly in studies of the contribution of transpiration-

driven mass flow of dissolved solutes as a plant uptake 

pathway on a wider range of crop plants under conditions 

relevant to the field. 
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