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Abstract:  Problem statement: Metal nanoparticles confine the motion of conduction electrons and 
exhibit a strong optical absorption of electromagnetic radiation in the UV-vis-NIR region. The absorption 
is classically derived from the collective oscillations of free electrons in a metallic nanostructure as a 
consequence of incident electromagnetic radiation polarizing the particle optically embedded in a 
dielectric matrix. These oscillations, known as the localized surface Plasmon resonance has been 
modelled by Gustav Mie in 1908 using the Maxwell’s equations. Nevertheless, the electrodynamics 
approach cannot account for the electronic transitions often displayed in experiment as a broad UV-vis 
optical absorption spectrum originated from the conduction electrons of metal nanoparticles. A quantum 
mechanical approach is required to address the optical absorption spectra of metal nanoparticles 
systemically. Approach: In this study, an attempt was made to calculate the optical absorption spectra of 
conduction electrons of metal nanoparticle quantum mechanically using the density functional theory. 
The particle was an isolated spherical metal nanoparticle containing N atoms confined in a face-centered 
cubic lattice structure. When light strikes the particle, the occupied ground-state conduction electrons 
absorbed the energy and excite to the unoccupied higher energy-state of the conduction band. In this 
development, we used time-independent Schrodinger equation for the ground-state energy of Thomas-
Fermi-Dirac-Weizsacker atomic model for the total energy functional and the density function in the 
Euler-Lagrange equation is algebraically substituted with the absorption function. The total energy 
functional was computed numerically for silver and gold nanoparticles at various diameters. Results: The 
results showed broad absorption spectra derived from the occupied ground-state conduction electrons at 
the orbital {n = 5 and l = 0 or 5s} for silver and {n = 6 and l = 0 or 6s} for gold, which excite to the 
unoccupied higher energy of conduction band at the orbital {n≥6 and l = 0 or 1} for silver and {n≥7 and l 
= 0 or 1} for gold. A nonlinear red-shift of the absorption peak λmax, appearing at 404.79, 408.36, 412.55, 
415.73, 418.42 and 420.96 nm for silver and at 510.28, 520.91, 533.11, 542.35, 549.74 and 556.04 nm for 
gold when the particle diameter varies at 4, 5, 7, 10, 15 and 25 nm respectively. The quantum 
confinement effect of the conduction bands is stronger for silver and gold nanoparticles of less than about 
20 nm in diameter. Conclusion: The optical absorption spectra of silver and gold nanoparticles have been 
successfully calculated using a quantum treatment and this calculation could be extended to other 
transition metal nanoparticles of interest in nanoscience and nanotechnology. 
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INTRODUCTION 
 

 Metal nanoparticles, typically 1-100 nm in 
dimension and containing 102-108 atoms demonstrate 
different physical and chemical properties from their 
bulk and atomic counterparts due to the surface and 
quantum  confinement effects (Banfi et al., 1998; 
Banyai et al., 1988; Takagahara, 1989). They have 
attracted considerable attention owing to their potential 
applications in such as catalysis (Zhong et al., 2010), 

optics (Kambhampati and Knoll, 1999), optoelectronics 
(Tanabe, 2007), spectroscopy (Chen et al., 2007; 
Cannone et al., 2007), biomedical   applications 
(Khlebtsov and Dykman, 2010) and electrochemical 
sensors (Korotcenkov et al., 2009). Noble metal 
nanoparticles of silver (Ag) and gold (Au) confine the 
motion of free electrons in conduction band and exhibit 
a strong optical absorption of electromagnetic radiation 
in the UV-vis-NIR region. This phenomenon has been a 
challenge to scientists for the last one hundred years. 
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According to the classical electrodynamics theory, the 
absorption is derived from the collective oscillations of 
free electrons in metallic nanostructures as a 
consequence of incident electromagnetic radiation 
polarizing the particles. These oscillations, known as 
the Localized Surface Plasmon Resonance (LSPR), are 
unique to metallic nanostructures and their resonance 
frequency is dependent on the particle characteristics 
such as the size, shape and chemical composition and 
the surrounding medium’s dielectric properties. 
 Light extinction in a single spherical nanoparticle 
of arbitrary size embedded in an optically dielectric 
matrix has been modelled by Mie (1908) using the 
Maxwell’s equations. The theory provides excellent 
results for very small nanoparticles of few nanometres 
in diameter. Several methods have been developed to 
determine the optical properties of non-spherical 
particles  based on the electromagnetic theory 
(Bruzzone et al., 2003; Okamoto and Yamaguchi, 2003; 
Noguez, 2005; Renteria and Garcia-Macedo, 2006). 
Nevertheless, the electrodynamics-based theories 
cannot account for the energy discretization of 
conduction electrons, which is the fundamental 
electronic property of metal nanoparticles.  
 A more satisfying treatment of light interaction 
with conduction electrons of metal nanoparticles 
requires a quantum theory consideration. Considerable 
efforts have been made to calculate the optical 
absorption and excitation of the valence electrons in 
metal nanoparticles based on the Time-Dependent 
Density Functional Theory (TD-DFT) (Hakkinen and 
Moseler, 2004; Sarasola et al., 2004; Negrut et al., 
2006; Samal and Harbola, 2006; Aikens et al., 2008; 
Gonzalez and Noguez, 2007; Huang   and   Carter, 
2008; Chen and Zhou, 2008; Zheng et al., 2009). The 
optical absorption spectra of metal nanoparticles can be 
determined from the ground-state density through the 
Hamiltonian operator because it characterizes all of the 
energy states of a system. However, quantum 
mechanical approach to quantify the optical absorption 
of conduction electrons of metal nanoparticles has not 
been addressed systemically. The discrete absorption 
spectra of conduction electron transitions have not been 
seen in optical measurements. Instead, UV-visible 
absorption spectra of metal nanoparticles are often 
displayed as a broad spectrum originated from the 
conduction electron transitions with exceptionally 
degenerate states. This is in marked contrast with 
absorption properties of the valence electrons of metal 
nanoparticles such as luminescence (Drachev et al., 
2004) and fluorescence (Roque et al., 2006), where the 
quantized states are readily observed due to well-
defined energy gap between two occupied energy 

states. In metal nanoparticles, the electron-hole 
interaction is screened off and the conduction electrons 
behave as nearly free.  
 The present study describes a fully quantum 
mechanical calculation of the optical absorption spectra 
of Ag and Au nanoparticles based on time-independent 
DFT. The particle is an isolated single solid metal 
nanosphere containing N atoms arranged in a face-
cantered cubic lattice structure. The total energy 
functional is the ground-state energy functional of the 
Thomas-Fermi-Dirac-Weizsacker atomic model to 
allow for the ground-state conduction electron density 
to be finite at the lowest energy state of the conduction 
band. The optical absorption of conduction electrons 
may be calculated by DFT because there is a 
relationship between the electron density function and 
the absorption function. In this development, the 
electronic density function in the final Euler-
Lagrangian equation is algebraically substituted with 
the absorption function. Our study includes the 
calculation of Lagrange multipliers, lattice constants, 
nuclear and electronic potentials, ground-state wave 
vectors, number of atoms and conduction electrons in a 
given particle size and optical absorption spectrum.  
  

MATERIALS AND METHODS 
 
Theoretical and numerical simulation: The schematic 
version of the band structure of metal nanoparticle is 
shown in Fig. 1. When light strikes the particle, the 
occupied ground-state conduction electrons absorbed 
photon energy and excite to the unoccupied higher 
energy-state of the conduction band. These events are 
seen in UV-visible absorption spectra measurements 
and can be used to study the conduction band electronic 
structures of the metallic nanoparticles. 
 In quantum mechanical calculation, Hohenberg-
Kohn-Sham DFT (Thomas, 1927) has been most widely 
used to study the electronic structures of many-electron 
systems such as nanostructures. The early foundations 
of DFT are due to the Hohenberg and Kohn theorem 
and Kohn-Sham equations, where the ground state 
electron density ρ(r) is the basic variable, from which 
all ground state properties could be derived. For optical 
absorption of metal nanoparticles, the ground-state 
energy functional E[ρ(r)] may be taken from the 
Thomas-Fermi-Dirac-Weizsacker atomic model 
(Thomas, 1927; Kohn and Sham, 1965; Fermi, 1927; 
Dirac, 1930; Von Weizsacker, 1935), written as: 
  

( ) ( ) ( )
( ) ( ) ( )

TF W

ee

E ρ r = T ρ r + λT ρ r

+ ρ r v r dr + V ρ r

          

  ∫
 (1) 
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Fig. 1: Schematic version of the energy band structure 

of a metal nanoparticle showing only four atoms 
of Ag nanoparticles. The optical absorption may 
be represented by absorption of UV-visible light 
by the occupied ground-state conduction 
electrons at the orbital {n = 5 and l = 5} or 5s 
electron state and promoted to the unoccupied 
higher energy states of the conduction band at 
the minimum orbital of either {n = 6 and l = 0 or 
6s} state or {n = 6 and l = 1 or 6p} state 
according to quantum number ∆n≥1 and ∆n = 0, 
1. The number of the ground-state conduction 
electrons increases corresponding to the number 
of atoms that made up the sizes of the 
nanoparticles 

 
 The first term, TTF [ρ(r)] is the kinetic energy of the 
Thomas-Fermi (TF) model in its original formulation of 
a local density approximation and expressed as a 
function of electron density ρ(r) for an infinite number 
of homogenous free electron gas systems at a given 
coordinate r, given by: 
 

( ) ( )5/3

TF k
T ρ r = C ρ r dr   ∫  (2) 

 
Where: 

Ck = ( )2/323 h
3π

10 m
 

 λTw[ρ(r)] = The Von Weizsacker (1935) correction to 
the kinetic energy of the TF model by 
inclusion exchange and correlation energy 
terms for the inhomogeneity of the 
electron density as a gradient correction 
about the uniform electron gas 

 
 This is the correct kinetic energy functional for 
metal nanoparticles where the conduction electrons 
resemble a one-electron or two-electron Hartee-Fock 
atom, given by: 
 

( ) ( )
( )

2
2

W

Ñρ r1 h
T ρ r = dr

8 m ρ r
   ∫  (3) 

 
 The parameter λ may be obtained by some 
empirical arguments for the ground state energy (Chen 

and Zhou, 2008; Yang, 1986; Engel and Dreizler, 1989; 
Chattaraj and Sengupta, 1997). The third term of Eq. 1 
is the potential energy of the system and the fourth 
term, expressed as Vee[ρ(r)] = J[ρ(r)]-KTFD[ρ(r)], is the 
potential energy functional for the effective electron-
electron repulsion. J[ρ(r)] is the classical Coulomb 
energy of electron-electron interactions and KTFD[ρ(r)] 
is the Thomas-Fermi-Dirac (TFD) model, which refers 
to the non-classical exchange-correlation energy of a 
homogenous free electron gas system defined as 
containing all remaining quantum effects not captured 
by J and kinetic energies T: 
 

( ) ( ) ( )ρ r ρ r'1
J ρ r, r' = drdr'

2 r - r'
   ∫∫  (4) 

 
and 
 

( ) ( )
1/3

4/3 2
TFD e e

3 3
K ρ r = C ρ r dr;C = e

4 π

 
    

 
∫               (5) 

 
 By taking atomic units m e c 1= = = =ℏ

 
throughout, 

the total energy functional, in the differential form to 
the second order is: 
 

( ) ( )
( ) ( ) ( )

( ) ( ) ( )

2

5/3

k

4/3

e

Ñρ rλ
E ρ = C ρ r dr + dr + ρ r v r dr

8 ρ r

ρ r ρ r'1
+ dr dr' - C ρ r dr

2 r - r'

   ∫ ∫ ∫

∫∫ ∫

 (6) 

 
 The exact ground state energy of the metal 
nanoparticles is the global minimum value of E[ρ(r)] 
and the density ρ(r) that minimizes E[ρ(r)] is the exact 
ground state density ρ0, namely: 
 

( ) ( ){ }0 0E = E ρ = min E ρ r :ρ³0, ρ r dr = N      ∫  (7) 

 
Where: 
E0 = The exact ground state energy 
E[ρ0] = The minimized energy functional (Hohenberg 

and Kohn, 1964) 
N = The number of electrons in the conduction 

band 
 
 The ground-state electron density must satisfy the 
variational principle: 
 

( ){ }δ E ρ -µ ρ r dr - N = 0     ∫  (8) 
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where, µ is the Lagrange multiplier associated with the 
normalized density functional. For completely 
degenerate conduction electrons at absolute zero 
temperature, µ is the Fermi energy. This yields the 
Euler-Lagrangian equation and is written as: 
 

( )
( ) ( ) ( ) ( ) ( )

TF W ee
δE ρ r δT δT δV

µ = = v r + +λ +
δρ r δρ r δρ r δρ r

  
 (9) 

 
 The Euler-Lagrangian Eq. 6 may be presented in 
terms of functional derivatives: 
 

( ) ( )
( )

( )
( )

( ) ( ) ( )

2
2

2/3

k 2

1/32
e

Ñρ r Ñ ρ r5 λ
C ρ r dr + - 2

3 8 ρ r ρ r

ρ r 4
+v r + e dr - C ρ r dr =µ

r - r' 3

 
 
 
 

∫

∫ ∫

 (10) 

 
where, r, the displacement coordinate of the conduction 
electrons from the centre of nanosphere and is 
dependent on the Bohr radius a0, atomic number Z, the 
principle quantum number n and the angular quantum 
number l. For ground-state conduction electrons at 
absolute zero temperature, µ is the Fermi energy. We 
found that the density of conduction electrons ρ(r) of an 
atom is a function of atomic number Z and absorption 
σ(r) or ρ(r) = ρ{Z, σ(r)}. Since both ρ(r) and σ(r) are 
continuous functions, the transformation of the density 
functional energy E[ρ(r)] to the absorption functional 
energy E[ρ(r)] can be made by algebraically 
substituting the electron density function in the Euler-
Lagrangian Eq. 10 with the absorption function: 
 

( )
( )

( ) ( ) ( )

( )

22

1
22

1/2

3 4

r rc
c v r

r r r

c r c 0

 ∂ σ ∂σ
+ + − µ σ  ∂ σ ∂ 

+ σ + =
 (11) 

 
where, c1, c2, c3 and c4 are constants. The final Euler-
Lagrangian Eq. 11 is the second order differential 
equation in terms of the absorption function.  
 The absorption functional energy E[σ(r)] of the 
conduction electrons is dependent on the particle type 
described by the atomic number, Fermi energy, 
potential energy and electron density, on the particle 
size described by the number of atoms that made up the 
spherical volume, lattice constant and ground-state 
wave vector and on the quantum number selection rules 
for the principle and angular quantum numbers. The 
transition ∆n≥1 for the principle quantum number and 

∆l = 0, 1 for angular quantum number, conduction 
electrons receive a plane electromagnetic wave x from 
photons and must overcome the ground-state 
electromagnetic wave vector kn to promote to the higher 
energy states of the conduction band. The lattice 
constants a calculated for Ag and Au nanoparticles are 
0.408 and 0.407 nm, respectively. The ground-state 
energy of the conduction electrons has the principle 
quantum number n = 5 and 6 for Ag and Au 
nanoparticles respectively. The Fermi levels µ 
calculated for Ag and Au atoms to be 5.49 and 5.53 eV 
respectively. By using Bloch’s theorem and the Born-
von Karman conditions, we reach the boundary 
conditions at the end points of the nanocrystal of σ0 = 0 
and σN = 0, where the two end points overlap to form a 
lattice loop. For numerical calculation, the absorption 
and wavelength in the Euler-Lagrangian equation are 
discretized (Yang, 1986) into σi and xi, by: 
 

( ) ( )2 2 2
i 1 i 1 ix / x 2 /+ −∂ σ ∂ = σ + σ − σ ∆  

 
and 
 

( ) ( )i 1 i 1x / x / 2+ −∂σ ∂ = σ − σ ∆  

 
where, i = 0, 1, 2,……N are integers representing the 
number of atoms that made up the spherical volume of 
a given diameter. The multivariate equations may be 
solved numerically by a trapezoid integration method 
using the Newton iterative program with a mesh size, ∆ 
= 0.01. Numerical simulations are carried out on single 
particle of different sizes.  
 

RESULTS AND DISCUSSION 
 
 Figure 2 depicts the calculated optical absorption 
spectra as a function of wavelength of the incident 
photons for a 4 nm Ag nanoparticle containing 50 atoms. 
The absorption spectra are derived from the occupied 
ground-state conduction electrons at the orbital 5s, 
which excite to the unoccupied higher-energy states of 
conduction band at the orbital ns or np or both with 
many possible transitions at n≥6 and l = 0 or 1. Here 
shown only for ten transitions from 5-10s, 13, 15, 20 
and 25s (n≥6, ∆l = 0) and from 5s to10p, 13, 15, 20 and 
25p (n≥6, ∆l = 1). Each spectrum represents transitions 
made by 50 conduction electrons to produce an 
absorption peak of λmax. It is interesting to note that 
despite many possible transitions, the discreteness of 
the conduction band does not clearly manifests itself 
because the absorption peak λmax of each transition 
spectrum   is   very   close   to    the    other   transitions. 
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Fig. 2: Calculated optical absorption spectra of a 4 nm 

Ag nanosphere, showing the absorption peaks of 
ten transitions from 5-10s, 13, 15, 20 and 25s 
(n≥6, ∆l = 0) and from 5s to10p, 13, 15, 20 and 
25p (n≥6, ∆l = 1). The energy bands of s-
electrons and p-electrons at the higher energy 
states of the conduction band are confined very 
close to each other and any possible transitions 
with quantum number n≥6 and ∆l = 0 or 1, 
produces the absorption peak revolves around 
λmax =  404.79 nm corresponds to the conduction 
band energy of 3.065 eV 

 
The absorption peaks λmax of the transitions shown for 4 
nm Ag nanoparticles appear in narrow wavelength 
regimes between 404.77 and 404.81 nm. It seems that 
the band gap between immediate electronic transitions 
(say for ∆n = 5, 8, 10, 15 and 20) is insignificant. This 
means that at the higher energy states of the conduction 
band, the s-electrons and p-electrons are confined very 
close to each other and can overlap. This is because at 
the distance far from the particle center and close to the 
Fermi level, the nuclear potential of the conduction 
electrons is the weakest and any transition allowed by 
the quantum number selection rules will have 
degenerate states, i.e., the absorption energy equal to 
the conduction band energy. The final absorption 
spectrum of the Ag nanoparticle from all possible 
transitions is somewhat broadened but revolves around 
λmax = 404.79 nm corresponds to the conduction band 
energy of 3.065 eV. 
 Fig. 3 depicts the calculated optical absorption 
spectra of ten possible transitions as a function of 
incident photon wavelength for a 4 nm Au nanoparticle.  

 
 
Fig. 3: Calculated optical absorption spectra of a 4 nm 

Au nanosphere, showing the absorption peaks of 
ten transitions from 6-11s, 14, 16, 21 and 26s 
(n≥7, ∆l = 0) and from 6s to11p, 14, 16, 21 and 
26p (n≥7, ∆l = 1). The energy bands of s-
electrons and p-electrons at the higher energy 
states of the conduction band are confined very 
close to each other and any possible transitions 
with quantum number n≥7 and ∆l = 0 or 1 
produces the absorption peak revolves around 
λmax = 510.28 nm corresponds to the conduction 
band energy of 2.432 eV 

 
The spectra are derived from the ground-state 
conduction electrons from the orbital 6-11s, 14, 16, 21s 
and 26s (n≥7, ∆l = 0) and from 6s to 11p, 14, 16, 21 and 
26p (n≥7, ∆l = 1). Similar to the situation of Ag 
nanoparticle, the absorption peaks λmax of Au 
nanoparticle appear in the narrow wavelength regime 
between 510.27 and 510.29 nm. The final absorption 
spectrum of the Au nanoparticle should be a more 
broader spectrum owing to many possible transitions 
allowed  by  quantum number selection rules (n≥7and 
∆l = 0). For the 4 nm Au nanoparticle the absorption 
peak revolves around λmax = 510.28 nm corresponds to 
the conduction band energy of 2.432 eV. 
 A red-shift of the absorption peak based on LSPR 
in metal   nanoparticles  has  been well documented 
(Pan et al., 1993; Sakai et al., 2009). We found that the 
absorption peaks λmax appear at 404.79, 408.36, 412.55, 
415.73, 418.42 and 420.96 nm for Ag nanoparticles of 
diameters 4, 5, 7, 10, 15 and 25 nm respectively. The 
absorption spectra become higher and broaden with the 
increase in particle size. For Au nanoparticles the 
absorption peaks λmax appear at 510.28, 520.91, 533.11, 
542.35, 549.74 and 556.04 nm for particle diameter of 
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4, 5, 7, 10, 15 and 25 nm respectively. An increase in 
the absorption peak λmax with the increase of particle 
sizes is attributed to the increase in the number of atoms 
that made up the particle sizes. The is an absorption 
peak red shift, which is longer for the smaller particle 
sizes than the larger sizes, indicating the absorption 
phenomenon of Ag and Au nanoparticles is nonlinearly 
size dependence (Pan et al., 1993; Anno and Tanimoto, 
2006).  
 The appearance of the absorption peak λmax at 
distinct regimes between Ag and Au nanoparticles for a 
given particle size is worth mentioning. The absorption 
peaks λmax for 4 nm Ag and Au nanoparticles appear at 
404.79 and 510.28 nm, respectively, while for 25 nm 
Ag and Au nanoparticles they appear at 420.96 and 
556.04 nm, respectively. The discrepancy in the 
absorption peaks of the two metallic systems is 
attributed to several factors, such as the multiplier 
parameter µ, lattice constant a, atomic number Z, 
nuclear potential and number of atoms. We noted that 
the Fermi energy and lattice constant of Ag and Au are 
about equal, but the absorption peaks λmax 

of the two 
systems appear at different wavelength regimes. The 
reason is that the nuclear potential of the system is 
proportional to the atomic number Z and inversely 
proportional to the radius, r. The numbers of proton of 
Ag and Au atoms are 47 and 79 respectively. Au 
nanoparticle has a stronger nuclear potential than Ag 
nanoparticle. Thus, the conduction electrons of Au 
nanoparticle are attracted stronger towards the center of 
the particle than Ag nanoparticle, reducing the size of 
the conduction band of Au nanoparticle than the Ag 
nanoparticle. Consequently, the absorption peak λmax of 
Au nanoparticle is longer than the Ag nanoparticle. We 
also observe that for nanoparticle diameters between 4 
and 25 nm, the absorption peak λmax increases from 
404.79-420.96 nm for Ag nanoparticles and from 
510.28 and 556.04 nm for Au nanoparticles. An 
increase in the number of atoms produces larger particle 
sizes, which increase the nuclear potential energy of the 
system. An increase in the number of atoms produces 
larger particle sizes, which increase the nuclear 
potential energy of the system and thus decrease the 
conduction band by 1/r. This increases the absorption 
peak as the particle size increases. This increases the 
absorption peak λmax 

as the particle size increases. In 
neighboring metallic systems, such as Pt and Au, which 
are different only by one conduction electron in each 
atom, we expect that the influence of the nuclear 
potential is not so dominant when compared to other 
factors such as the ground-state conduction electronic 
structure and multiplier parameter µ. 

 
 
Fig. 4: Conduction band of Ag nanoparticles as a 

function of sphere diameter, showing the 
quantum confinement effect of the conduction 
band is stronger at the smaller particle sizes than 
the larger sizes 

 

 
 

Fig. 5: Conduction band of Au nanoparticles as a 
function of sphere diameter, showing the 
quantum confinement effect of the conduction 
band is stronger at the smaller particle sizes than 
the larger sizes 

 
 Quantum confinement effects on some properties 
of nanostructures have been reported (Anno and 
Tanimoto, 2006; Haglund et al., 1994; Pejova and 
Grozdanov, 2004). Figure 4 depicts the conduction 
band energy of the Ag nanoparticles as a function of 
diameter. It shows that as the particle diameter 
increases from 4-100 nm, the conduction band 
decreases from 3.065-2.895 eV. Figure 5 depicts the 
conduction band energy of Au nanoparticles at various 
diameters. As the particle diameter increases from 4-
100 nm, the Au nanoparticle conduction band decreases 
from 2.432-2.183 eV. The change in conduction band is 
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very significant for the smaller particle sizes than the 
larger particle sizes. This means strong quantum 
confinement conduction band effects of the Ag and Au 
nanoparticles occurred for smaller particle sizes below 
about 20 nm. This effect is less significant with the 
larger particle sizes. This suggests that Ag and Au 
nanoparticles become more relevant in many 
applications at the smaller sizes because their 
conduction bands can be tuned more widely with 
smaller particle diameters.  
 

CONCLUSION 
 
 In summary, we successfully used a quantum 
mechanical approach to simulate numerically the optical 
absorption spectra of the Ag and Au nanoparticles based 
upon time-independent DFT. The optical absorption is 
derived from light impinging on the metal nanoparticle 
causing the occupied ground-state conduction electrons 
to excite to the unoccupied higher energy states of the 
conduction band. The calculated absorption peaks λmax 
are sensitive to the particle type, which characterizes by 
the atomic number, Fermi energy, absorption function, 
potential energy of the system and absorption and 
electron density and on the particle size, which describes 
by the number of atoms and lattice constant. The 
absorption peaks λmax red-shift to the higher wavelengths 
by increasing the particle diameter and appear at 404.79, 
408.36, 412.55, 415.73, 418.42 and 420.96 nm for Ag 
nanoparticles and at 510.28, 520.91, 533.11, 542.35, 
549.74 and 556.04 nm for Au nanoparticles when 
simulated for diameter sizes of 4, 5, 7, 10, 15 and 25 nm 
respectively. The change in the absorption wavelength 
shift is substantial at the smaller particle sizes than the 
larger sizes. There is a strong quantum confinement 
effect on the conduction band energy for the smaller Ag 
and Au nanoparticles below about 20 nm. The quantum 
mechanical calculations of the optical absorption spectra, 
presented here for Ag and Au nanoparticles could be 
extended to other transition metal nanoparticles of 
interest in nanoscience and nanotechnology. 
 

ACKNOWLEDGEMENT 
 
 This study was supported by the Ministry of Higher 
Education of Malaysia under the FRGS and RUGS 
grants.  
 

REFERENCES 
 
Aikens, C.M., S. Li and G.C. Schatz, 2008. From 

discrete electronic states to Plasmon: TDDFT 
optical absorption properties of Agn (n = 10, 20, 35, 
56, 84, 120) tetrahedral clusters. J. Phys. Chem. C., 
11: 11272-11279. 

Anno, E. and M. Tanimoto, 2006. Size-dependent 
change in energy bands of nanoparticles of white 
tin. Phys. Rev., 73: 155430-155436. 

Banfi, G.P., V. Degiorgi and D. Ricard, 1998. 
Nonlinear optical properties of semiconductor 
nanocrystals. Adv. Phys., 47: 447-510. 

Banyai, L., Y.Z. Hu, M. Lindberg and S.W. Koch, 1988. 
Third-order optical nonlinearities in semiconductor 
microstructures. Phys. Rev. B., 38: 8142-8153. 

Bruzzone, S., G.P. Arrighini and C. Guidotti, 2003. 
Theoretical study of the optical absorption 
behavior of Au/Ag core-shell nanoparticles. Mater. 
Sci. Eng. C., 23: 965-970. 

Cannone, F., M. Collini, L. D’Alfonso, G. Baldini and 
G. Chirico et al., 2007. Voltage regulation of 
fluorescence emission of single dyes bound to gold 
nanoparticles. Nano Lett., 7: 1070-1075. 

Chattaraj, P.K. and S. Sengupta, 1997. Dynamics of 
chemical reactivity indices for a many-electron 
system in its ground and excited states. J. Phys. 
Chem. A., 101: 7893-7900. 

Chen, H. and A. Zhou, 2008. Orbital-free density 
functional theory for molecular structure 
calculations.  Num. Math.: Theory Method Appli., 
1: 1-28. 

Chen, Y., K. Munechika and D.S. Ginger, 2007. 
Dependence of fluorescence intensity on the 
spectral overlap between fluorophores and Plasmon 
resonant  single  silver  nanoparticles. Nano Lett., 
7: 690-696. 

Dirac, P.A.M., 1930. Note on exchange phenomena in 
the Thomas atom. Math. Proc. Cambridge Philos. 
Soc., 26: 376-385. 

Drachev, V.P., E.N. Khaliullin, K. Kim, F. Alzoubi and 
S.G. Rautian et al., 2004. Quantum size effect in 
two-photon excited luminescence from silver 
nanoparticles. Phys. Rev. B., 69: 1-5. 

Engel, E. and R.M. Dreizler, 1989. Extension of the 
Thomas-Fermi-Dirac-Weizsacker model: four-
order gradient corrections to the kinetic energy. J. 
Phys. B.: Atomic Mol. Opt. Phys., 22: 1901-1912. 

Fermi, E., 1927. Un metodo statistico per la 
determinazione di alcune priorieta dell’atome. 
Rend. Accad. Naz. Lincei, 6: 602-607. 

Gonzalez, A.L. and C. Noguez, 2007. Influence of 
morphology on the optical properties of metal 
nanoparticles. J. Comp. Theor. Nanosci., 4: 231-238. 

Haglund Jr., R.F., L. Yang, R.H. Magruder, C.W. White 
and R.A. Zuhr et al., 1994. Nonlinear optical 
properties of metal-quantum-dot composites 
synthesized by ion implantation. Nucl. Inst. 
Methods Phys. Res. B.: Beam Interact. Mater. 
Atoms, 91: 493-504. 



Phy. Intl. 1 (1): 57-64, 2010 
 

64 

Hakkinen, H. and M. Moseler, 2004. Symmetry and 
electronic structure of noble-metal nanoparticles 
and  the    role    of    relativity. Phys. Rev. Lett., 
93: 093401-1-4. 

Hohenberg, P. and W. Kohn, 1964. Inhomogeneous 
electron gas. Phys. Rev., 136: 864-871. 

Huang, P. and E.A. Carter, 2008. Advances in 
correlated electronic structure methods for solids 
surfaces and nanostructures. Ann. Rev. Phys. 
Chem., 59: 261-290. 

Kambhampati, D.K. and W. Knoll, 1999. Surface-
Plasmon optical techniques. Curr. Opin.  Colloid  
Interface Sci., 4: 273-280. 

Khlebtsov, N.G. and L.A. Dykman, 2010. Optical 
properties and biomedical applications of 
plasmonic nanoparticles. J. 
Quant. Spectrosc. Radiat. Transf.., 111: 1-35. 

Kohn, W. and L.J. Sham, 1965. Self-consistent 
equations including exchange and correlation 
effects. Phys. Rev., 140: 1133-1138. 

Korotcenkov, G., S.D. Han and J.R. Stetter, 2009. 
Review of electrochemical hydrogen sensors. 
Chem. Rev., 10: 1402-1433. 

Mie, G., 1908. Beitrage zur Optik truber Medien 
speziell kolloidaler Metallosungen. Annalen Der. 
Physik., 25: 377-445. 

Negrut, D., M. Anitescu, A. El-Azab and P. Zapol, 2006. 
Quasicontinuum-like Reduction of DFT 
Calculations of nanostructures. J. Nanosci. 
Nanotechnol., 8: 3729-3740. 

Noguez, C., 2005. Optical properties of isolated and 
supported      metal     nanoparticles. Opt.  Mater., 
27: 1204-1211. 

Okamoto, T. and I. Yamaguchi, 2003. Optical 
absorption study of the surface Plasmon resonance 
in gold by self-assembly technique. J. Phys. Chem. 
B., 38: 10321-10324. 

Pan, A., Z. Yang, H. Zheng, F. Liu and Y. Zhu et al., 
1993. Changeable position of SPR peak of Ag 
nanoparticles embedded in mesoporous SiO2 glass 
by annealing treatment. Applied  Surface  Sci., 
205: 323-328. 

Pejova, B. and I. Grozdanov, 2004. Manifestations of 
three-dimensional confinement effects in the 
optical spectra of CdSe quantum dots in thin film 
form. Mater. Lett., 58: 666-671. 

 
 
 
 
 
 

Renteria, V.M. and J. Garcia-Macedo, 2006. Modeling 
of optical absorption of silver prolate nanoparticles 
stabilized by Gemini surfactant. Colloids Surf. A., 
273: 1-3. 

Roque, J.,    N. Poolton,    J. Molera,   A. Smith and 
A.E. Pantos et al., 2006. X-ray absorption and 
luminescence properties of metallic copper 
nanoparticles embedded in a glass matrix. Phys. 
Stat. Solidi B., 243: 1337-1346. 

Sakai, N., Y. Fujiwara, M. Arai, K. Yu and T. Tatsuma, 
2009. Electrodeposition of gold nanoparticles on 
ITO: Control of morphology and Plasmon 
resonance-based absorption and scattering. J. Elect. 
Chem., 628: 7-15. 

Samal, P. and M.K. Harbola, 2006. Exploring 
foundations of time-independent density functional 
theory for excited states. J. Phys. B.: Atomic Mol. 
Opt. Phys., 39: 4065-4080. 

Sarasola, A., R.H. Ritchie, E. Zaremba and P.M. 
Echenique, 2004. Density functional theory based 
stopping power for 3D and 2D systems. Adv. 
Quant. Chem., 46: 1-28. 

Takagahara, T., 1989. Biexciton states in 
semiconductor quantum dots and their nonlinear 
optical properties. Phys. Rev. B., 39: 10206-10231. 

Tanabe, K., 2007. Optical radiation efficiencies of 
metal nanoparticles for optoelectronic applications. 
Mater. Lett., 61: 4573-4575. 

Thomas, L.H., 1927. The calculation of atomic fields. 
Math. Proc. Cambridge Philos. Soc., 23: 542-548. 

Von Weizsacker, C.F., 1935. Zur Theorie der 
Kernmassen. Zeitschrift fur Phys., 96: 431-458. 

Yang, W., 1986. Gradient correction in Thomas-Fermi 
theory. Phys. Rev. A., 34: 4575-4585. 

Zheng, Y.B.,    Y.W. Yan,   L. Jensen,   L. Fang and 
B.K. Juluri et al., 2009. Active molecular 
plasmonics: controlling Plasmon resonances with 
molecular switches. Nano Lett., 9: 819-825. 

Zhong, C.J.,    J. Luo,   B. Fang,   B.N. Wanjala and 
P.N. Njoki et al., 2010. Nanostructured catalysts in 
fuel cells. Nanotechnology, 21: 1-20. 


