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Abstract: Atherosclerosis poses a significant challenge to the general 

population, with its prevalence particularly prominent among older 

individuals. Age, however, is not the sole determinant of risk, as gender also 

plays a crucial role. Sex-related disparities exist not only in the incidence of 

atherosclerosis but also in its progression and development. The intricate 

interplay of hormones in the female reproductive system contributes to its 

proper functioning. Perturbations in this hormonal system can give rise to 

disorders and conditions that influence the susceptibility to various diseases, 

including cardiovascular disorders. Such conditions encompass both natural 

occurrences like menopause as well as pathological conditions such as 

polycystic ovarian syndrome. This comprehensive review delves into the 

examination of hormonal imbalances in females as risk factors and compiles 

pertinent information regarding the role of key hormones, particularly 

estrogen and its derivatives, in the context of atherosclerosis. The review 

article not only highlights the impact of hormonal imbalances on the risk of 

developing atherosclerosis but also provides comprehensive insights into the 

specific mechanisms underlying estrogen's role in the disease process. 

Additionally, it explores the influence of other major hormones, expanding 

the understanding of their contributions to atherosclerosis. To select the 

initial literature sources, we searched the PubMed database with the 

following keywords and their combinations: "Female hormones", 

"atherosclerosis", "sex as a risk factor", and "estrogen". Using this search, we 

chose several papers, from the analysis of which we started this review. 

Moving through these papers, we developed the structure of the review. 

 

Keywords: Progesterone, Atherosclerosis, Pregnancy, Women's Health, 
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Introduction 

Atherosclerosis is a chronic condition characterized by 

the formation of fibrous atheromas or plaques on the walls 

of arteries. The stages of this process involve the 

accumulation of lipids in the arterial wall, inflammation, 

thickening of the intima, and fibrosis, which leads to the 

stiffening of the arterial wall and eventually result in 

plaque erosion or rupture (Rafieian-Kopaei et al., 2014). 

Plaque rupture can obstruct blood flow in the vessel, 

leading to ischemic heart disease or myocardial infarction. 

This process often remains asymptomatic for many years 

until clinical symptoms become apparent. 

Atherosclerosis, being a leading cause of mortality 

worldwide, contributes to the development of disorders 

such as stroke, myocardial infarction, peripheral artery 

disease, and aortic aneurysms (Libby et al., 2019). 

However, in the younger population (40-60 years), 

atherosclerosis or coronary artery disease primarily 

affects men, while women generally develop 

atherosclerosis after menopause (Fairweather, 2014). 

Although the prevalence of atherosclerosis is lower in 

women, autoimmune conditions like rheumatoid 

arthritis, systemic sclerosis, systemic lupus 
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erythematosus, as well as hypertension, can 

significantly increase the risk of atherosclerosis in 

women (Kurmann and Mankad, 2018). These findings 

suggest that the immune mechanisms underlying 

atherosclerosis may differ in men and women 

(Fairweather, 2014). 

In women, myocardial infarction death rates are higher 

than in men, which is partially attributed to the 

development of atherosclerosis. Other factors include 

unexpected adverse effects of certain medications and 

post-surgical complications that are more prevalent in 

women, as well as vascular devices that are often better 

suited for men than women (Harvey et al., 2015). 

Furthermore, atherosclerosis in women often remains 

asymptomatic for a longer duration. The absence of chest 

pain or noticeable vessel occlusion in women often leads 

to misdiagnosis and delayed treatment. Additionally, 

there are significant differences in the inflammatory 

infiltrate in coronary artery disease between men and 

women (Pathak et al., 2017). Despite extensive 

research on atherosclerosis, there is a growing 

recognition that the immune mechanisms underlying 

the development of this condition may differ between 

men and women, suggesting the need for gender-

specific approaches in understanding and managing 

atherosclerosis-related disorders. 

Gender-Specific Risk-Factors 

There are a number of gender-specific conditions that 

can promote the development of CVD in women, such 

as menopause, preeclampsia, Polycystic Ovary 

Syndrome (PCOS), and gestational diabetes 

(Vakhtangadze et al., 2021).  

Polycystic Ovary Syndrome 

This disorder affects approximately 10% of women 

during the reproductive years. PCOS with a complete 

phenotype includes such symptoms as 

hyperandrogenism, polycystic ovaries, and ovulatory 

dysfunction. A study by Talbott et al. (2004) reported an 

association between PCOS and intimate media thickness 

due to metabolic consequences of PCOS. Lifelong 

exposure to the cardiovascular risk profile in PCOS can 

result in the early development of atherosclerosis in 

women. Additionally, PCOS may have other independent 

effects that are not due to the abovementioned factors 

related to this condition (El Hayek et al., 2016; Rosenfield 

and Ehrmann, 2016).  

Preeclampsia/Eclampsia 

Preeclampsia/eclampsia is considered to be a serious 

risk factor specific for women as it may severely 

complicate pregnancy. It has also appeared that those 

females who have been affected by this disorder are at a 

high risk of developing atherosclerotic conditions at a 

later age (Gupte and Wagh, 2014).  

A systematic review with meta-analysis (Wu et al., 

2017) demonstrated that women with preeclampsia four 

times more often develop cardiac failure and have a two-

fold higher incidence of stroke, myocardial ischemia, 

and death caused by coronary heart disease or 

cardiovascular disease (Wu et al., 2017). A study 

conducted by Haukkamaa et al. (2009). Argues that 

preeclampsia may be an independent risk factor for 

atherosclerotic plaques (Haukkamaa et al., 2009). The 

research carried out by Kessous et al. (2015) suggests 

that preeclampsia during pregnancy independently 

contributes to the development of long-term 

atherosclerosis. Women suffering from acute and 

recurrent preeclampsia are at a higher risk of developing 

atherosclerotic disease (Kessous et al., 2015). 

Gestational Diabetes 

Type 1 diabetes or gestational diabetes in young 

women is another gender-related risk factor. While 

diabetes associated with other factors causes about 

30% of the age-associated growth in the risk of CHD in 

male patients, in women the risk grows up to 60% 

(Kramer et al., 2019). 

Menopause 

Another factor contributing to sex differences in 

atherosclerotic morbidity can be liver estrogen signaling 

which promotes steps of Reverse Cholesterol Transport 

(RCT) in the liver (Palmisano et al., 2018). The 

importance of estrogen for the progress of RCT in its early 

stages in humans may be disputable. Estradiol esters from 

high-density lipoprotein can improve cholesterol efflux 

capacity from macrophages. There is a high probability 

that increased levels of VLDL-TG in menopause cause an 

increase in efflux of cholesterol from HDL due to estrogen 

deficiency in menopause compared to the premenopausal 

period (Corcoran et al., 2011). 

Anti-Atherosclerotic Effect of Female Sex Hormones 

Epidemiological studies showed that overall 

morbidity and mortality from CVD are lowest in 

premenopausal women compared to postmenopausal 

women of the same age as men, suggesting that female 

sex hormones can be protective against cardiovascular 

diseases. This notion was confirmed by the evidence that 

estrogen administration in postmenopausal women 

ameliorated the course of the disease (Ueda et al., 2021). 

Several studies on animal models demonstrated that 

estrogen treatment reduced experimentally induced 

atherosclerosis (Berntsen et al., 2021; Goetz et al., 2018). 

According to a study by Rhee et al. (1977), estrogen 

decreased surgery-induced hyperplasia in rabbit aorta. 
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Balloon injury-related intimal thickening can be 

reduced by estradiol. Diet-induced atherosclerosis in 

rats and rabbits can also be ameliorated by estrogen 

(Rhee et al., 1977).  

Studies in macaques revealed lower prevalence of 

atherosclerosis in premenopausal macaques than in male 

macaques. However, Ovariectomy (OVX)-) induced 

menopause in combination with a moderately atherogenic 

diet led to progressive development of atherosclerosis 

(Kaplan et al., 2009). An Estrogen Replacement Therapy 

(ERT) initiated at the same time as ovariectomy showed a 

significant anti-atherosclerotic effect, while delayed 

treatment had low or no effect (Guo et al., 2020).  

Several influential interventional studies in humans 

also demonstrated an inverse correlation between CVD 

development and estrogen administration in 

postmenopausal women, confirming the role of 

estrogen in reducing the CVD risk (Iorga et al., 2017). 

A number of trials (The estrogen in the prevention of 

atherosclerosis trial and “ELITE” the early versus late 

intervention trial with estradiol) showed that unopposed 

ERT with micronized 17-estradiol (1 mg/day) decreased 

Carotid Intima-Media Thickness (CIMT) in women 

compared to placebo-administered controls (Mehta et al., 

2021). Women administered with estradiol within the 

first 6 years of menopause demonstrated lower mean 

CIMT than the late intervention group who received the 

treatment 10 or more years after menopause. 

Furthermore, a positive association between higher 

estradiol plasma levels following the therapy and lower 

subclinical atherosclerosis was only observed in the 

early intervention group once again confirming the role 

of timing in Hormone Therapy (HT) (Sriprasert et al., 

2019). A concurrent cohort multi-ethnic study of 

atherosclerosis also revealed a reverse correlation between 

estradiol levels and the risk of atherosclerotic CVD in 

postmenopausal women (Prabakaran et al., 2021).  

Natural progesterone administration contributes to 

estrogen-related effects in reducing CVD in 

postmenopausal women. However, this does not apply to 

synthetic Medroxyprogesterone Acetate (MPA). 4-week 

estradiol-only therapy (18 days 1 mg/day dosage and 

2 mg/day for the next 10 days) postponed the onset of 

ST depression on an ECG in a treadmill exercise stress 

test (Nie et al., 2022). This effect was further enhanced 

in estradiol-treated subjects administered transvaginal 

progesterone gel (90 mg every two days), but not oral 

MPA (10 mg/day).  

Negative lipid profile changes belong to the main 

factors accelerating atherogenesis (Furness et al., 

2004). Thus, an additional beneficial effect of 

progesterone in increasing High-Density Lipoprotein 

Cholesterol (HDL-C) and triglycerides and decreasing 

Low-Density Lipoprotein Cholesterol (LDL-C) in 

estrogen-treated patients, was investigated. The 

postmenopausal estrogen/progestin interventions 

showed a superior increase in HDL-C in patients 

administered with unopposed estrogen (0.625 mg/day) 

in combination with cyclic Micronized Progesterone 

(MP) (200 mg/day) compared to patients treated with 

unopposed estrogen and MPA (Jiang and Tian, 2017). 

Unopposed estrogen plus cyclic MP treatment resulted 

in higher triglyceride levels and lower LDL-C levels 

compared to matched placebo-treated controls. The 

multi-center clinical trial on hormone replacement 

treatment in China demonstrated similar outcomes 

(Jiang and Tian, 2017).  

Still, a number of interventional studies showed 

divergent results. The heart and estrogen-progestin 

replacement study evaluated a group of postmenopausal 

women with CHD administered with unopposed estrogen 

(0.625 mg/day) and MPA (2.5 mg/day) (Shufelt and 

Manson, 2021). The study revealed no significant 

reduction in either nonfatal MI prevalence and CHD-

related death rate or secondary outcomes such as 

resuscitated cardiac arrest or stroke. The estrogen 

replacement and atherosclerosis trial involved women 

with epicardial coronary stenosis (Hashemzadeh et al., 

2020; Wellons et al., 2012). The same regimen or 

estrogen-only treatment resulted in a prominent increase 

in HDL-C levels and a decrease in LDL-C levels. 

However, no reduction in the development of coronary 

atherosclerosis was observed (Li et al., 2021). The Kronos 

early estrogen prevention study demonstrated no CIMT 

reduction in patients treated with unopposed estrogen 

(0.45 mg/day) and transdermal 17-estradiol (50 g/day, 

concomitant progesterone 200 mg/day was given at the 

beginning 12 days of each month), although recent-

initiated healthy postmenopausal women did not 

demonstrate negative consequences following ERT. 

There is still a need for more research on ERT effects on 

various forms of atherosclerosis in order to find optimal 

regimens (Miller et al., 2019).  

Follicle Stimulating Hormone (FSH) 

A remarkable inverse correlation has been reported 

between FSH concentrations and atherosclerosis without 

evident manifestations in women between 64 and 73 years 

of age in a recent study. It is worth mentioning that the 

findings of the study have been adjusted for confounding 

factors such as sex hormone-binding globulin or estradiol 

levels, the prevalence of cardiometabolic impairments, or 

adiposity, unlike earlier trials (Gregersen et al., 2019). 

Furthermore, unlike previous studies, this time only 
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postmenopausal females were involved, which rules out 

the possibility of uneven concentrations of estradiol and 

FSH (Soares et al., 2020). 

In order to improve normality, the IMT data of the 

study was transformed, which complicated the evaluation 

of the revealed associations between FSH and IMT 

(Bertone-Johnson et al., 2017). The unadjusted mean IMT 

difference between the greatest and lowest values of FSH 

in analyses of untransformed data was equal to 0.09, a 

difference of 9,6%. Obese women demonstrated a 3.1% 

higher unadjusted IMT compared to normal-weight 

women (P = 0.20), while individuals with hypertension 

had a 9.8% higher mean IMT compared to women with 

normal blood pressure. Thus, the level of difference in 

mean IMT between individuals with the highest and 

lowest FSH levels is similar to that of other well-known 

proatherogenic factors (Freeman et al., 2010).  

The study of women’s health across the nation also 

included some research on the correlation between FSH 

and IMT. A cross-sectional study of patients between 

45-58 years (mean age was ~50 years) did not reveal 

any association between FSH and IMT. The study 

assessed the trajectory of FSH and estradiol change 

throughout the perimenopause (El Khoudary et al., 

2019). Later El Khoudary et al. (2019) measured the 

correlation between the trajectory and IMT 8 years 

following the menopausal transition (mean age was 

~59 years). Following adjustment, the data 

demonstrated significantly higher IMT in individuals 

with the most typical trajectory of FSH growth (n = 431) 

compared to women with the lowest trajectory (n = 53) 

(El Khoudary et al., 2019). However, IMT in 

individuals with the highest trajectory (n = 372) was 

not much greater, which indicates a non-linear 

relationship. The study did not show any correlation 

between IMT and estradiol pattern. Interestingly, FSH 

levels were changed 10 years following the last 

menstruation, which illustrates the length of 

postmenopausal hormonal transition. That is why it is 

very hard to estimate the correlation between hormones 

and cardiovascular health in women throughout this 

period. The association between FSH and atherosclerosis 

may be different before and after the hormonal changes 

are complete (El Khoudary et al., 2019).  

Only several works have estimated FSH in later-age 

patients. Shaw et al. revealed a significant decrease in 

FSH levels as well as in FSH reaction to GnRH in 

women aged 70-77 years (27 years after the last 

menstrual period on average) compared to women aged 

48-57 (4 years after the last menstrual period on 

average), though no difference in estradiol levels was 

observed (Shaw et al., 2009).  

FSH structure may vary between women before and 

after menopause. The half-life of the molecules depends 

on the isoforms of sulfonated N-acetylgalactosamine 

and sialic acid residues. Postmenopausal isoforms of 

FSH are characterized by greater concentrations of sialic 

acid and thus are more negatively charged and have a 

longer half-life in vivo. The prevalence of isoforms 

depends on age and differs from individual to individual 

(Wide and Eriksson, 2013).  

The negative correlation between FSH and IMT 

reported in the recent study could possibly be explained 

by estradiol levels and obesity. Adiposity in 

postmenopausal women is associated with higher 

estradiol, since androgens are aromatized to estrogens in 

adipose tissues. Extragonadal estradiol suppresses FSH 

expression, thus obese women tend to have higher FSH 

levels (Mair et al., 2020). Inverse associations between 

FSH and adiposity have been observed in several different 

studies. However, in the recent study, the inverse 

associations between FSH and IMT persisted even 

following adjustment for the confounding factors and thus 

cannot be a result of an interplay between adiposity and 

estradiol levels (Barrett-Connor, 2013).  

This relationship may be also affected by activities 

and follistatin. While activins A, B, and AB promote 

FSH synthesis, follistatin suppresses FSH secretion by 

binding activin. Together, activins and follistatin 

mediate adipogenesis, insulin resistance, inflammatory 

processes, and atherosclerosis. Polycystic ovary 

syndrome is also connected with dysregulation of 

follistatin-activins interaction (Teede et al., 2013). In 

addition to anovulation and hyperandrogenism, the 

condition has been associated with higher follistatin 

levels, reduced FSH levels, adiposity, and insulin 

resistance. Thus, these hormones may connect the 

reproductive and metabolic manifestations of this 

disorder. During the menopausal transition, follistatin 

levels decrease and bioavailability of activin increases, 

presumably leading to higher FSH levels in 

postmenopausal women. The findings of the recent 

study may reflect the results of hormonal interaction 

between activins and follistatin that affect 

atherosclerosis and insulin resistance in late menopause, 

leading to decreased sensitivity of the hypothalamic-

pituitary-gonadal axis (Teede et al., 2013). 

Mechanisms Behind the Anti-Atherogenic Effects 

of Estrogens 

Figure 1 provides a schematic summary of 

antiatherosclerotic effects on various cell types. To 

illustrate the negative effects of estrogens, we also 

provided Fig. 2. 
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Fig. 1: Summary of anti-atherosclerotic effects of estrogens on 

cells of different types 

 

 
 
Fig. 2: Summary of pro-atherosclerotic effects of estrogens on 

cells of different types 

 

The Role of Endothelium 

Numerous studies have reported that Estradiol (E2), its 

metabolites as well as synthetic estrogens have a 

beneficial effect on endothelial function. This effect is 

reached through a number of various mechanisms. Firstly, 

E2 promotes Nitric Oxide (NO) production. In Estrogen 

Receptor Alpha (ERα) knockout mice E2 does not 

stimulate eNOS activity and NO-related vasorelaxation 

and these effects are mimicked by highly selective ERα 

agonists, which indicates that ERα plays a crucial role in 

E2-dependent NO production (Fuentes and Silveyra, 

2019). However, when exposed to E2, endothelial cells 

demonstrate S-nitrosylation during which NO modulates 

protein functions directly. This process involves Estrogen 

Receptor Beta (ERβ). Furthermore, vascular constriction 

can be blocked by 2-methoxyestradiol (2-ME, which is 

not related to ERα or ERβ) through increased eNOS and 

local NO production. Secondly, E2 promotes prostacyclin 

(PGI2) release in the endothelium leading to a transfer 

from vasoconstriction to vasodilation as a result of 

increased expression of both cyclooxygenase 1 and/or 2 

and prostaglandin synthase. Both ERα, ERβ, and 2-ME 

can mediate this process (Iwakiri, 2011). Thirdly, estrogen 

blunts endothelial activation, preventing endothelial 

dysfunction. Under exposure to pro-atherogenic factors like 

Lysophosphatidylcholine (LPC), IFNγ, Lipopolysaccharide 

(LPS), IL1B, and TNFα, E2 and its metabolites inhibit the 

release of adhesion molecules in the endothelium. At the 

same time, E2 decreases release of α4β1 and αLβ2 

integrins which conjugate withVCAM1 and ICAM-1 

during inhibition of RAC-1 activity. Subsequently, 

estrogen prevents monocyte and neutrophil migration 

into endothelium under in vitro conditions. 

Furthermore, estrogen downregulates NADPH oxidase 

activity, reducing intracellular expression of ROS 

which could promote the release of adhesion 

molecules. Both ERα, ERβ, and 2-ME can mediate this 

process (Thor et al., 2010).  

In addition to enhancing endothelial function, 

estrogens support endothelial integrity by increasing its 

barrier function and reducing permeability to LDLs. As 

evidenced by many studies, E2 also promotes the 

proliferation and survival of endothelial cells due to its 

mitogenic effect. Furthermore, cell apoptosis initiated by 

TNFα, H2O2, or oxidized LDL can be prevented if the 

cells are exposed to E2 (Robert et al., 2021). Moreover, 

estrogens inhibit mitochondrial ROS release in the 

endothelium and ROS-related apoptosis through an 

interaction with cytochrome c release. Finally, estrogens 

increase telomerase activity by promoting eNOS-ERα 

complex formation. The complex interacts with the 

hTERT gene promoter and promotes hTERT 

transcription. Thus, estrogens are involved in preventing 

cellular senescence (Du et al., 2017).  

These protective effects of E2 on endothelium can be 

emulated in animal models in the setting of atherosclerosis. 

E2 has been shown to hamper the negative effects of 

hypercholesterolemia on vasorelaxation as well as 

preventing fatty streak formation (Niță et al., 2021).  

A study involving ovariectomized Apoe KO mice 

showed that an increase in NO bioavailability does not 

affect the development of atherosclerosis, suggesting that 

in early stages E2 has an anti-atherogenic effect that does 
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not depend on NO. However, in a study involving female 

rabbits on a pro-atherogenic diet, long-term 

administration of NOS inhibitors caused chronic 

endothelial dysfunction which aggravated atherosclerosis. 

The protective effect of E2 was abolished in this setting 

in intact but not in de-endothelialized vessels 

(Rodrigues et al., 2022).  

There was reported a major inverse correlation between 

no production and atherogenesis in hypercholesterolemic 

rabbits with or without endothelial dysfunction. In a similar 

study, hypercholesterolemia-related adhesion of 

monocytes and their migration into the endothelium was 

more prevalent in male than in female animals. 

Oophorectomy aggravated this process, while E2 

administration of female animals reversed it. As evidenced 

by later studies, regulation of endothelial VCAM1 release 

plays an important role in estrogen-exerted 

atheroprotection (Zhou et al., 2019). 

Holm et al. initially revealed the pivotal role of 

endothelium for the anti-atherogenic effect of estrogens in 

Holm et al. (1997). The study showed that estrogens lost 

their atheroprotective effect in rabbits with 

hypercholesterolemia following the destruction of 

endothelium with a balloon catheter. These findings were 

confirmed by Billon-Galés et al. (2009). By means of 

CreLox recombination, they showed that ERα 

elimination in the endothelium leads to a complete 

abolition of the anti-atherogenic effect of E2 in 

ovariectomized LDLR-deficient murine models, 

following the suppression of E2-related no expression 

(Billon-Galés et al., 2009). These data prove that the 

endothelial monolayer should be the main target for 

estrogen treatment of vascular diseases and that the anti-

atherogenic effect of E2 is mediated primarily by ERα 

which likely regulates estrogen-induced VCAM1 

suppression in the endothelium.  

The Role of Macrophages, Dendritic Cells and 

Lymphocytes 

The number of macrophages in the arterial wall 

depends on the inverse processes of proliferation and 

apoptosis. The development of atherosclerotic plaques 

can be promoted by M-CSF-a cytokine that mediates the 

transition of monocytes to macrophages and growth of 

macrophages-as well as by suppression of macrophage 

apoptosis, while M-CSF absence, on the contrary, has an 

anti-atherogenic effect. However, in advanced lesions, 

apoptotic macrophages coalesce over time into a necrotic 

core which ultimately leads to plaque rupture and 

atherothrombotic events (Checkouri et al., 2021).  
In regard to E2's influence on macrophage-related 

cholesterol homeostasis, currently available data 

demonstrate that E2 reduces cholesterol ester content. 

This has been proved by a study involving murine models. 

E2 inhibits acylCoA-cholesterol transferase and 

stimulates neutral cholesterol ester hydrolase. 

Furthermore, E2 decreases macrophage uptake of 

modified LDL. This effect depends on ERα-induced 

suppression of scavenger receptor CD36. Additionally, 

ERα-deficiency affects cholesterol efflux in macrophages 

mediated by ABCA1 and APOE proteins (Hai et al., 

2018). ERα-deficient macrophages export less cholesterol 

after incubation with HDL, while E2 promotes cholesterol 

efflux when associated with HDL particles. According to 

numerous studies, E2 is carried in HDL in the form of 

fatty acyl esters. Lecithin-cholesterol acyltransferase 

(LCAT) catalyzes their production. LDLR- and/or SR-BI 

mediate the internalization of the esters and then they are 

hydrolyzed in the cell in order to unfold their effects. 

Additionally, Cholesteryl Ester Transfer Protein (CETP) 

transports E2 esters to LDL particles where they moderate 

oxidation caused by free radicals expressed by activated 

macrophages. Thus, E2 has a favorable effect on 

cholesterol homeostasis and reduces oxidation of LDL 

particles, decreasing LDL retention in the vessel wall 

(Jebari-Benslaiman et al., 2020).  

In addition to enhancing cholesterol homeostasis, E2 

was shown to have an indirect effect on macrophage 

proliferation. Studies involving Apoe-deficient mice 

demonstrated that E2 can modulate M-CSF expression in 

bone marrow and aorta. Additionally, E2 upregulates Fas 

and Fas Ligand (FasL (FASLG)) and activates caspases 8 

and 3 which promotes apoptosis of monocytes, 

cholesterol-loaded macrophages, and macrophage-

derived osteoclasts, resulting in lower lesion cellularity in 

mouse models of atherosclerosis (Farahi et al., 2021). 

Thus, E2 may have an anti-atherogenic effect in the early 

stages of atherosclerosis by reducing the amount of 

macrophages in the vessel intima. In one of the instances 

E2 also suppressed macrophage apoptosis in an ERα-

mediated process depending on higher BCL2 expression. 

This effect can be favorable in treating late-stage 

atherosclerosis as it hampers necrotic core formation 

(Rentz et al., 2020).  

Equivocal outcomes have been achieved in regard to 

the effect of estrogens on inflammation. Macrophages, 

monocyte-derived macrophages, primary microglia and 

microglial cell lines, E2, ER agonists, and phytoestrogens 

were shown to reduce pro-inflammatory activation, as 

evidenced by decreased iNOS release, reduce the 

synthesis of pro-inflammatory cells, as well as matrix 

metalloproteinase 9 both in mice models and in humans. 

E2 was also shown to abolish MHC-II release in 

macrophages in response to INFγ (Villa et al., 2016).  

E2 was reported to have an impact on several 

inflammatory pathways, such as nuclear translocation, 

phosphorylation, mobilization of Signal Transducers and 

Activators of Transcription (STAT) 1 and 3, and 

inhibition of the transcription factor NF-κB activation 
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through both genomic and nongenomic action. E2 impact 

on iNOS release, TNFα expression, and NF-κB activation 

was partially inhibited in macrophages without 

Peroxisome Proliferator-Activated Receptor α (PPARα), 

suggesting that PPARα is involved in the anti-

inflammatory action of E2 and highlighting its value as a 

therapeutic target in atherosclerosis treatment with fibrates 

(Marino et al., 2006).  

Several studies involving animal models of 

inflammation confirmed the anti-inflammatory impact of 

estrogens on macrophages, such as abolishment of NF-κB 

translocation and prevention of glial reactivity in rats with 

chronic spinal cord trauma. A study in rats and mice with 

trauma hemorrhage showed that both E2 and ER agonists 

restored normal activation of NF-κB and cytokine 

expression through an ERα-mediated mechanism 

(Giraud et al., 2010). Furthermore, E2 suppressed MHC-

II antigen expression and thus reduced macrophage 

recruitment into the allograft intima and transplant 

atherosclerosis in rats and rabbits that underwent artery 

transplantation. In a recent study, ERα-deficient 

macrophages isolated from animal models lacking ERα in 

myeloid cells were shown to be refractory to the anti-

inflammatory effect of IL4, as evidenced by higher release 

of immune cell activity markers and chemokines. 

Moreover, the atherosclerotic lesion area in LDLR 

knockout models with myeloid-specific ERα deficiency 

was two times larger (Yu et al., 2020).  

Controversially to these results (Rettew et al., 2009) 

estrogens may contribute to inflammation in a mouse 

model of sepsis (Rettew et al., 2009). Ovariectomy 

removed endogenous estrogens in the model and reduced 

the expression of pro-inflammatory cytokines, 

subsequently decreasing TLR4 expression on 

macrophages. E2 replacement had the opposite effect 

after the in vivo LPS challenge. Calippe et al. (2010) also 

reported that E2 administration promoted the release of 

iNOS, IL1B, IL6, and IL12p40 by peritoneal 

macrophages after ex vivo LPS (Calippe et al., 2010). 

Additionally, E2 administration inhibited AKT 

phosphorylation in LPS-activated macrophages and 

Phosphoinositide Kinase-3 (PI3K) activity. At the same 

time, it increased NF-κB p65 transcriptional activity. 

Later studies showed that ERα gene disruption in 

macrophages annihilates this effect of E2 on peritoneal 

macrophages, suggesting that E2 targeted these cells 

directly. The same group reported that optimal dendritic 

cell function is mediated by ERα signaling, as evidenced 

by the expression of MHC-II, CD86, and the release of 

pro-inflammatory cytokines (Mittal and Roche, 2015). 

Furthermore, E2 promoted mobilization of dendritic cells 

and Th1 reaction that promoted inflammation and thus 

aggravated experimental myasthenia gravis. In addition, 

E2 was demonstrated to enhance the GM-CSF-induced 

transition of progenitor cells in the bone marrow into DCs, 

suppress apoptosis, and increase the expression of pro-

inflammatory cytokines. It is still unclear why estrogens 

have different effects on macrophages and dendritic cells in 

regard to inflammation in vitro and in vivo. The duration of 

the treatment may be one of the factors influencing the 

results of the studies (Bhattacharya et al., 2015).  

Rayner et al. (2008) presented some new findings, 

suggesting that estrogens increase the macrophage 

expression of Heat-Shock Protein 27 (HSP27). HSP27 

prevents the uptake of lipoproteins that contain a lot of 

cholesterol, inhibits foam cell formation, and promotes 

macrophage response that reduces inflammation 

(Rayner et al., 2008). Studies reported that female but not 

male murine models with excessive HSP27 presented 

reduced atherosclerosis. An inverse correlation between 

HSP27 and E2 levels in plasma was documented. E2 

treatment of atherosclerosis was shown to be more 

efficient in the abovementioned model than wild-type 

mice and the atheroprotective action of E2 in these mice 

could be recapitulated by ERβ-specific agonist, but not 

ERα-specific agonist. These data indicate a completely 

new mechanism of anti-atherogenic E2 action involving 

ERβ, which could be a potential therapeutic target in the 

treatment of atherosclerosis (Madeira et al., 2013).  

Involvement of Smooth Muscle Cells 

In addition to endothelial cells and macrophages, the 

development of atherosclerosis also depends on Vascular 

Smooth Muscle Cells (VSMC). Following injury of the 

intima, VSMCs change their phenotype and become 

activated. They move from media to intima and increase 

proliferation. VSMCs contribute to plaque formation in 

the early stages by releasing lipid uptake receptors and 

participating in foam cell formation. Furthermore, like 

endothelial cells, they release pro-inflammatory 

cytokines, chemokines, free radicals, and adhesion 

molecules. At the same time, VSMCs are a source of 

intracellular matrix and thus prevent plaque rupture in the 

later stages of atherosclerosis (Hu et al., 2019).  

There is substantial evidence of the significant effect of 

E2 and estrogens on vascular smooth muscle cells. In vitro 

studies have shown that E2 inhibits VSMC proliferation 

caused by FGF, PDGF, Ang-II, or LPS and leads to G1 

arrest. Concomitantly E2 reduced the release of cell cycle 

regulators such as cyclin D and phosphorylation of Rb 

protein and decreased activation of kinases MEK1/2 

(MAP2K1/2) and ERK1/2 (MAPK3/6) (Xia et al., 2020). 

In addition, E2 promoted VSMC apoptosis through 

p42/44 and/or p38 MAPK activation and BAX 

upregulation and suppressed VSMC migration toward 

pro-atherogenic chemoattractants. Furthermore, 

estrogens decreased pro-inflammatory VSNC activation 

and reduced MCP1, COX2, and endothelin 1 release 

(Wei et al., 2019).  
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Animal models with vascular injury presented with 

decreased infiltration of neutrophils following E2 

administration which may be due to inhibition of TNFα-

induced release of Cytokine-Induced Neutrophil 

Chemoattractant (CINC)-2β. Moreover, estrogens 

promote the expression of antioxidative enzymes and 

suppress NADPH oxidase, thus reducing the oxidative 

stress in VSMCs. Under in vivo conditions, all these 

effects translate into decreased formation of neointima 

which has been confirmed by several studies involving 

ovariectomized mouse models with ligation-injury of 

carotid arteries as well as in rat carotid arteries and balloon-

injured rabbit aortas (Takano and Nakagawa, 2001).  

The ER mediator of the anti-atherogenic effects of 

E2 in CSMC is still unclear. The pro-apoptotic effect 

of E2 as well as E2-related increase in superoxide 

dismutase expression are likely mediated by ERα. 

However, E2-induced suppression of ERK1/2 activity 

and proliferation in porcine VSMC was abolished as a 

result of antisense therapy. Similarly, the suppressive 

action of E2 on TNFα-induced CINC-2β release and 

Ang-II-induced VSMC proliferation was abolished by 

ERβ but not by ERα inhibitors. Furthermore, rats with 

balloon injury presented with increased ERβ mRNA 

expression, and local treatment with selective ERβ 

agonists was more effective than ERα agonists in 

decreasing the formation of neointima. These findings 

suggest that the effect of estrogens on VSMCs is primarily 

mediated by Erβ (Ambhore et al., 2018).  

In addition, G Protein-Coupled Receptor 30 (GPR30) 

was reported to be released on VSMC in order to regulate 

vascular tone. The activation of the receptor suppressed 

VSMC proliferation and NADPH oxidase activation and 

mediated the proapoptotic effect of E2. GPR30 activation 

in VSMC may thus be considered one of the 

atheroprotective cellular effects of E2 (Zha et al., 2020).  

Finally, 2-ME was demonstrated to mitigate the 

formation of injury-induced neointima in rat models. In vitro 

studies reported that 2-ME not only suppresses VSMC 

proliferation at the G0/G1 and G2/M cell cycle phase but 

also reduces cyclin D and B and increases p27. However, 

these effects were abolished in COMT-deficient VSMC, 

as they do not convert E2 to 2-ME, which indicates that 

the E2 effects on VSMC are partly mediated in a way that 

does not involve classical ERs (Chiu et al., 2022).  

Limitations and Future Perspectives 

However, despite all the valuable insights from 

numerous studies, researchers in the field of female sex 

hormones and their influence on atherosclerosis have 

various limitations. First of all, many studies examining the 

relationship between female sex hormones and 

atherosclerosis rely on observational designs, such as 

cohort studies or cross-sectional analyses. While these 

studies can provide valuable insights, they cannot establish 

a cause-and-effect relationship. Randomized Controlled 

Trials (RCTs) would be ideal to demonstrate causality but 

can be challenging to conduct in this context. Also, studies 

exploring the influence of female sex hormones on 

atherosclerosis may suffer from small sample sizes, making 

it challenging to generalize the findings to larger 

populations. Additionally, the majority of the existing 

research may have focused on a specific demographic or 

ethnic group, limiting the generalizability to other 

populations. Another factor is hormonal variability: The 

levels and ratios of female sex hormones can vary 

significantly over a woman's lifespan and menstrual cycle. 

Failing to account for such hormonal fluctuations in study 

designs may lead to incomplete or biased conclusions about 

the influence of hormones on atherosclerosis. 

Atherosclerosis is a multifactorial disease influenced by 

various factors, including age, lifestyle, diet, genetics, 

medications, and comorbidities. It's important to control for 

these confounding factors adequately to attribute any 

observed effects specifically to female sex hormones. 

Addressing these limitations within future research 

endeavors will contribute to a more robust understanding of 

the intricate relationship between female sex hormones and 

atherosclerosis, assisting in the development of effective 

prevention and treatment strategies. 

Here are some strategies for future research in the field of 

the influence of female sex hormones on atherosclerosis: 

Longitudinal studies can help establish temporal 

relationships and provide insights into the long-term effects 

of hormone fluctuations on cardiovascular health; inclusion 

of diverse groups of women in future research efforts to 

account for potential ethnic, racial and cultural differences in 

the influence of female sex hormones on atherosclerosis will 

enhance the generalizability of findings and support 

personalized approaches to healthcare; multi-omics 

technologies, such as genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics, can help with a more 

comprehensive understanding of the molecular mechanisms 

linking female sex hormones to atherosclerosis. Integrating 

these data can provide insights into the complex interplay 

between hormones, genetic factors, and metabolic pathways. 

Conclusion 

Women's health is undeniably influenced by their 
hormonal background, encompassing not only the 
reproductive system but the entire body. Disturbances in 
hormone production and functioning can significantly 
impact susceptibility to various diseases. When it comes to 

atherosclerosis and subsequent cardiovascular diseases, the 
anti-atherogenic effect of estrogen emerges as a crucial 
factor. The protective effects of estrogen against 
atherosclerosis are mediated through multiple mechanisms, 
prominently involving inflammation and its modulation of 
key inflammatory molecules within various cell types, such 

as macrophages, dendritic cells, and endothelial cells. 
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Studies have revealed that estrogen exerts its anti-
atherogenic effects by regulating the expression of pro-
inflammatory cytokines, mitigating the adhesion and 
migration of monocytes, reducing oxidative stress, and 

modulating the synthesis and degradation of extracellular 
matrix components. Several experimental and clinical 
investigations have provided evidence supporting the role 
of estrogen in promoting favorable vascular health and 
preventing atherosclerosis progression. 

Furthermore, our review extensively examined the risks 

associated with female hormonal imbalances in the context 

of atherosclerosis. It is important to acknowledge that 

hormonal disturbances, such as those seen in Polycystic 

Ovary Syndrome (PCOS) or hormonal replacement 

therapies, can confer an increased risk of atherosclerosis and 

cardiovascular diseases. Irregularities in hormone levels, 

particularly imbalances in estrogen and its interactions with 

other hormones can disrupt the delicate physiological 

equilibrium and contribute to the development of 

atherosclerotic lesions. Understanding the intricate 

relationships between hormones and atherosclerosis is 

indispensable for elucidating the underlying mechanisms 

and devising targeted therapeutic strategies. 

Conclusively, the impact of female hormones on the risk 

of atherosclerosis cannot be ignored, given the significant 

anti-atherogenic effects of estrogen observed through 

modulating inflammation and its related molecules. Further 

research in this field holds immense potential to unravel 

novel therapeutic avenues for attenuating atherosclerosis and 

enhancing cardiovascular health in women. 
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