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Abstract: In this study an EEG and EMG signal is analyzed for startle 

type epilepsy. Future, ten subject were involved in this study, for hearing 

a sound or sudden touch on a particular area of the body especially the 

right side leg, initially induces a jerk which leads to subsequent tonic 

contraction. The modeling technique and Correlation technique have 

analyzed for both acquired EEG and EMG signal. The result demonstrates 

the electrode Fz, Cz, and Pz show the correlation between the EEG and 

EMG signal of the right leg. Also, the gain of signal also shows the 

similarity of these electrodes Fz, Cz, and Pz during the event along with 

the right leg. The Relative Gain Array (RGA) shows the interaction 

between the EEG electrode and EMG. The feature Inter quartile Range 

(IQR), skewness and entropy shows the strong correlation between the 

EEG and EMG right leg, For left leg it shows poor correlation. From the 

RGA we infer that the event is provoked at the central of frontal and 

parietal region of the brain. 
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Introduction  

Epilepsy is a chronic non communicable disorder of 

the brain that affects people of all age. World Health 

Organization (WHO) surveys report that about 50 

million people (nearly 80%) worldwide have epilepsy, 

and about 70% of all epileptics are treated appropriately. 

Accurate diagnosis of the epilepsy is essential for both 

short term and long term management. The major cause 

of neurological disorder is seizures. It occurs as a 

symptom transient, reversible disruption of brain 

function that is not associated with increased risk of 

seizure recurrence, such as fever. Accurate diagnosis of 

the epileptic syndrome in neonates, infants, children, 

teenagers and adult is very important for their treatment 

(Evangelia et al., 2016). 

EEG is one of the essential tool which gives a useful 

information about brain function and neurological 

disorders. To diagnosis the status epilepticus, the 

minimum standards should be used. A 12-24 h data is 

sufficient for reporting the event. Benbadis and Tatum 

(2003) future, we study the presence of epileptic form 

activities such as spikes, slow rhythm, and high-

frequency epileptic form oscillations. By using epileptic 

form oscillation we can confirm the presence of epilepsy 

easily (Indiradevi et al., 2008). In spite of 40 year 

analysis in to the physiology of epilepsy, it is still 

impossible to explicate when a seizure occurs and what 

timeframe is accepted as sensible between the two states 

– that is, the period of transition from a relatively normal 

brain state to when the clinical seizure occurs. Seizures 

encompass a large portion of the cortex, involving 

thousands of interacting neurons. As a result we can 

analyse the epileptic brain as a system with important 

mechanisms from primary seizure (Asha et al., 2013). 

Seizure dynamics were investigated using many 
different mathematical methods, both linear and non-
linear (Pijin et al., 1991) a study has reported that the use 
of non linear EEG signal and features for the 
classification of epileptic event or non epileptic event, 
demonstrated a high degree of accuracy. Due to body 

movement and cranial muscle activity (>30 Hz), eye 
blink and motion artifacts are separated and removed 
using ICA and Gamma sub band filtering (30-50 Hz). 
The predofant frequencies have been quantitatively 
verified by spectrographic investigation (Schiff et al., 
2000). The statistical feature spectral entropy estimation 

technique is used for analysis, Based on this Separability 
and Correlation analysis (SEPCOR) they select the 
optimal feature and ranking the channels based on 
Variability measure (V-measure). The SEPCOR analyse 
uses feature vector arranged in a descending order of V-
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measure and a correlation matrix. The features with a 
correlation highest MAXCORR are included and the 
feature with lowest V-measure are excluded. These 
features are applied to Multilayer Perceptron (MPL) and 

K-Nearest Neighbor (K-NN) has resulted in accuracy 96 
and 99.6% respectively. The performance is tested in 
different values of correlation threshold. Among this 
classifier the K-NN performs with less computation 
time whereas MLP has higher computation time 
(Padmashri and Sriraam, 2016). 

Valderrama et al. (2012) have analysed multiple 

channel EEG, ECG and IEEG for seizure prediction 

during the pre-ictal period. The algorithmic features like 

time domain, frequency domain, time and frequency 

domain are analysed for in-sample and out-sample 

classification. Mean represent the frequency distribution 

of the signal and the feature standard deviation, IQR and 

variance signify the amount of changes in frequency 

distribution. Zbilut et al. (2002) entropy quantifies the 

degree of complexity in a time series. Median, 

Kurtosis and mode will have specific frequency bands 

(Evangelia et al., 2016; Zhang et al., 2008). This study 

uses all the available seizures and data from first half of 

the seizure is used for testing and training the samples. 

The correlation coefficient between the features was 

computed. For EEG features, the highest positive 

correlation was obtained for mean, skewness, and the 

relative power in the delta band (0.1-4Hz). During the 

pre-ictal state, Slow-Wave Sleep (SWS) lasts for several 

minutes before the onset of the seizure, consistent with 

the increased high-frequency power or decreased low-

frequency power of the heart rate. The features are not 

unique for the pre-seizure activity. The average pre-ictal 

period of approximately 30 min but many were false 

positive. For seizure prediction, the pre-ictal states do 

not reflect a deterministic, but pre-ictal state may lead to 

improved performance for control algorithms. 

Electro-Encephalography (EEG) is an inexpensive 

and an important clinical tool for the evaluation and 

treatment of neurophysiologic disorders. The study of 

relationship between EEG and EMG provide us with 

physiological information about how activities of the 

cerebral cortex, mainly those of the sensory-motor cortex 

are related to the movement of interest, whether it is 

voluntary or involuntary (Lew et al., 2012). In case of 

voluntary movement, the EEG-EMG correlation is done 

mainly to investigate mechanisms underlying the central 

motor control and its disorders. Since the movement-

related cortical electric activities are usually small as 

compared to the background EEG activity, they cannot 

be identified by visual inspection of the raw record, even 

if they might occur in close time relation to the 

movement (Sylvia et al., 2014).  

 
 
Fig. 1: Schematic sketch of the modeling and correlation 
 

The objective of this study to analyze startle type 

epilepsy and to find transfer function model, further we 

are identifying the channel of the ictal onset. The block 

diagram is shown in the Fig. 1. 

Materials and Methods 

Subjects  

In this study, a long term has been evaluated for EEG 

and EMG signal. The Fig. 2 shows an example of Startle 

type Epilepsy. The EEG data is acquired from 10 

subjects with startle type epilepsy (4 male and 6 female; 

age range 1-16 years), who underwent long-term video –

EEG montoring at Fortis Malar Hospital, Adyar, 

Chennai. The EEG signal were recorded through a 

digital video-EEG system (20 channel EEG system , 

Nicolet One Neuro diagnostic system,) from electrode 

(Fp1, F3, C3, P3, O1, Fp2, F4, C4, P4, O2, F7, T1, T3, 

T5, F8, T2, T4, T8, T6, Fz, Cz, Pz, ECG, EMGrl, 

EMGll,) attached using electrodes 10-20 system of 

electrode placement. Jayant et al. (2016) a bipolar 

electrode montage is used in the analysis. Each electrode 

output is band pass filtered by 0.5-100 Hz during 

recording by setting the low cut and high cut at 0.3Hz 

and 70Hz, respectively. The EEG data were 

subsequently digitized through a 12-bit A/D converter 

with a sampling rate at 256Hz and stored in the hard disk 

of PC for off line analysis. A data set containing these 

events were then pruned from the main file and stored as 

ASCII file. We analyzed the EEG activity of these 

electrodes O1, O2, T2, T3, T4, T6, Fz, Pz, Cz and ECG 

which represent Frontal (F), Central (C), Partial (P), 

Temporal (T) and Occipital (O) area of the brain.  
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Fig. 2: An example startle-induced seizures 

 

 
 (a) 

 

 
 (b) 

 
Fig. 3: (a) EEG signal (b) Differential windowed EEG signal 
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Along with this, EMG signal from right and left tebilian 

muscles are also considered to find the epileptic event. 

Indiradevi et al. (2008) the block diagram as shown in 

Fig. 2 represents for the startle type epilepsy. 

Pre-Processing  

The major difficulty in EEG is artifacts removal in 

the signals. All data were pre-processed with a notch 

filter at 50Hz for power line disturbance rejection, and 

with band pass filter (1.0-80.0 Hz) for environment 

noise reduction (Padmashri and Sriraam, 2016). A 

Differential Window (DW) (Parvez and Paul, 2016) is 

used in differentiating values between preictal/ictal 

EEG signal. It is observed that the signals are rather 

more distinctive. After applying the DW to the data of 

EEG signal and EMG signal it discriminates between 

the pre-ictal and ictal states better. Majumdar and 

Vardhan (2011) the Fig. 3a and b shows the EEG 

signal and pre-processed signal. 

Feature Extraction  

After preprocessing, the statistical features are 

extracted for 10s epoch. In 24- channel data, the 

features extracted are Inter Quartile Range (IQR), 

variance, mean, median, mode, skewness, kurtosis, 

entropy, Mean Absolute Deviation (MAD) and 

standard deviation extracted for selected electrodes. 

Kurtosis and skewness are measures of ‘peakedness’ 

and ‘asymmetry’ respectively. Karoly et al. (2016) 

the Inter Quartile Range (IQR) is a measure of 

variability, based on dividing a data set in to quartiles. 

Bedeeuzzamana et al. (2012) the Median Absolute 

Deviation (MAD) is a robust measure of the 

variability of a univariate sample of quantitative data. 

Bedeeuzzamana et al. (2012; Helen et al., 2013). 

Correlation 

From the extracted feature set a correlation 

coefficient (r) is computed between the central line 

electrodes like F
z
, P

z
, Cz , O1, O2, T2, T3, T4 and EMG 

right leg and left leg electrodes for each subject using 

linear fit technique. The correlation coefficient r is 

given by Equation (1): 
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Y are the feature values of EEG and EMG electrode 

(Ravindra and Ramakrishnan, 2014). 

Modeling of EEG and EMG 

Modeling of EEG and EMG signal is to understand 

the complexity of the brain with the muscular activity 

(Kasabov and Elisa, 2015). In this section, the time 

series data were used to model the multichannel EEG 

and EMG right and left leg. Gatein et al. (2013) 

modeling is the abstraction of a real process to 

characterize its behavior. The aim of Modeling is to 

enhance the investigation of phenomena in order 

understand the cause-effect relationships (Yang et al., 

2015). The set of processes in a system determines the 

behavior of the system. Every process is determined 

by its physical and chemical properties, which are not 

always easily known. A model tries to emulate the 

‘essential aspects’ of the system behavior, simplified 

by choosing the most significant properties. 

Garthwaite et al. (1988) modeling complex projects. 

Wiley, New Jersey) so, a model based technique is 

used on data without having previous knowledge of 

the system. The model describes how the outputs 

depend on the inputs. System identification tries to 

estimate a black or grey model of a dynamic system. 

Tukey (1960) some examples of identification aims 

could be listed here: 

 

• To analyze the properties of the system  

• To forecast the evolution of the system  

• To identify the interaction between coupled systems  

• To improve the internal knowledge of the system 

 

Time series analysis definition was given by 
(Tukey, 1960) “Time series analysis consists of all the 
techniques that, when applied to time series data, 
yield, at least sometimes, either insight or knowledge, 
and everything that helps us choose or understand 
these procedures”. Thus, a time series can expose 
some concealed information about the system, as 
periodicity, outliers and trends, using typical statistics 
estimators (Diwaker et al., 2016). 

Results and Discussion 

In this study we have shown the consistency of 

processing the seizure event, by correlating the EEG 

and EMG signal. Ten second epoch were taken and 

features were extracted. Ictal EEG channels shows an 

initial midline vertex discharge followed by diffuse 

attenuation or low voltage fast activity, which may 

have onset areas of structural brain abnormality the 

Table 1 shows the features extracted from the 

electrodes Fz, Pz, Cz, O1, O2, T2, T3, T4,T6, ECG, 

EMG right and left leg. The feature of the electrode 

Fz, Pz, Cz, O1, O2, T2, T3, T4, T6, ECG is correlated 

with EMGRL and EMGLL is shown in Table 2.  
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Table 1: Feature extraction of electrode 

 Features 

 ------------------------------------------------------------------------------------------------------------------------------------------------ 

       Standard 

Electrode Mean IQR MAD Median Mode Variance deviation Entropy Kurtosis Skewness 

Fz 12.1000 73.300 35.760 10.850 -17.010 1773.360 40.800 1.0330 1.8820 0.09700 

Pz -13.4000 72.300 37.840 -13.530 -31.722 2085.310a 44.470 1.0227 2.1910 -0.02240 

Cz 13.5600 69.830 35.822 12.863 -7.911 1841.020 41.710 1.0286 2.1035 0.02600 

O1 -3.9843 73.499 38.441 -4.590 -26.394 2169.700 45.253 1.0420 2.2144 0.02770 

O2 -2.9160 68.670 36.584 -3.385 -21.244 2119.550 43.400 1.0450 2.2820 -0.00270 

T2 22.7450 70.620 36.319 22.300 2.352 1892.600 42.291 0.9740 2.0950 0.00320 

T3 7.7480 71.796 37.097 7.212 -13.770 1986.553 43.316 1.0410 2.1370 0.01560 

T4 11.4750 71.693 37.016 11.082 -10.060 1978.900 43.228 1.0334 2.1336 0.00174 

T6 -3.9920 69.530 36.556 -4.261 -22.056 1970.420 43.058 1.0453 2.2250 -0.00860 

ECG 7.4800 59.540 43.789 17.255 14.612 4694.120 66.788 0.9458 13.2370 -1.95300 

EMGRL 17.4950 111.625 111.997 -11.221 -40.232 52361.450 227.240 1.0216 22.5750 4.02600 

EMGLL 6.1670 116.110 111.830 -22.165 -50.834 44170.200 227.450 1.3314 22.5760 4.02000 

 
Table 2:  Correlation between features 

EEG–EMG 

electrode Seizure Mean IQR MAD MIN MAX VAR STD Entropy Kurtosis Skewness 

Fz-EMG RL No event 0.14750 0.03230 -0.01050 0.10050 0.1952 -0.0202 3.06E-04 -0.0048 0.0795 0.1334 

Pz-EMG RL  0.04750 -0.10430 -0.02020 0.08320 -0.0983 -0.1719 -0.04050 0.0153 0.0409 0.0465 

Cz-EMG RL  0.03920 -0.01690 0.05220 -0.01540 -0.2468 0.0348 0.04850 0.0144 0.0591 0.0605 

O1-EMG RL  0.03600 0.25800 0.36940 -0.16540 -0.2354 -0.3647 -0.13650 0.1256 0.1987 0.2658 

O2-EMG RL  0.13560 0.02500 0.06540 0.12940 0.3459 -0.1258 0.32140 0.2498 0.2360 0.1250 

T2-EMG RL  0.03500 0.14500 0.03600 0.02140 0.0365 0.1236 0.24510 0.1236 0.2635 0.1478 

T3-EMG RL  0.12540 0.02140 0.03610 0.12340 0.0321 0.1206 0.02140 0.0125 0.1365 0.0235 

T4-EMG RL  0.12650 0.02140 0.03650 0.02540 0.2413 0.0974 0.18790 0.0987 0.0140 0.0258 

T6-EMG RL  0.12450 0.32500 0.01200 0.09870 0.0870 0.0941 0.06540 0.0145 0.1254 0.1320 

ECG-EMG RL  0.01200 0.02140 0.03540 0.01630 0.1235 0.0985 0.01450 0.0147 0.0654 0.3690 

Fz-EMG LL  0.02540 -0.04170 0.07050 0.08080 0.0310 0.0623 0.07060 -0.1857 0.0593 -0.0981 

Pz-EMG LL  -0.04390 -0.07220 -0.07190 -0.03500 0.0084 -0.0251 -0.02250 0.1703 0.0473 0.0079 

Cz-EMG LL  -0.00390 -0.01600 -0.04990 0.04930 -0.0417 -0.1160 -0.08980 0.0950 0.1136 0.0975 

O1-EMG LL  0.05400 0.13540 0.14700 -0.03690 0.1450 0.3214 0.01250 0.3524 0.0159 0.2654 

O2-EMG LL  0.02650 0.12980 0.14560 0.17530 0.1569 0.0634 0.23140 0.0154 0.0314 0.0125 

T2-EMG LL  0.12580 0.03000 0.32100 0.15620 0.0214 0.0124 0.06500 0.0156 0.2350 0.0124 

T3-EMG LL  0.14500 0.01240 0.01590 0.03240 -0.3650 0.0214 0.01450 0.0125 0.0145 0.0156 

T4-EMG LL  0.13540 0.01640 0.02140 0.01530 0.2140 0.0124 0.02630 0.1254 0.0321 0.0214 

T6-EMG LL  0.01240 0.02540 0.12630 0.01247 0.0324 0.0125 0.32140 0.0156 0.0124 0.0365 

ECG-EMG LL  0.01250 0.21450 0.01240 0.03150 0.1234 0.3210 0.01250 0.0324 0.0124 0.0125 

Fz-EMG RL During event 0.09540 0.85260 0.84660 0.65670 0.9256 0.7594 0.36340 0.8062 0.3393 0.9893 

Pz-EMG RL  0.15480 0.72560 0.81120 0.56670 0.9680 0.6547 0.42580 0.8516 0.3546 0.9136 

Cz-EMG RL  0.07840 0.84200 0.65500 0.75480 0.9345 0.8257 0.42630 0.7026 0.4562 0.8147 

O1-EMG RL  0.12500 0.24100 0.03690 0.14750 0.3215 0.1453 0.25410 0.0214 0.3245 0.1262 

O2-EMG RL  0.23140 0.15620 0.32540 0.14520 0.3652 0.0124 0.25420 0.0136 0.0125 0.2154 

T2-EMG RL  0.23650 0.14590 0.32540 0.25430 0.1265 0.2456 0.12650 0.1475 0.3214 0.1586 

T3-EMG RL  0.36920 0.15870 0.23540 0.12650 0.1235 0.3695 0.25410 0.3695 0.2456 0.1234 

T4-EMG RL  0.23650 0.26540 0.12350 0.25430 0.2136 0.2365 0.15470 0.0236 0.2365 0.01523 

T6-EMG RL  0.36210 0.12360 0.25420 0.12540 0.0365 0.0125 0.12650 0.0123 0.3214 0.0214 

ECG -EMG RL  0.01230 0.02540 0.02360 0.01630 0.0156 0.1236 0.01530 0.0236 0.0125 0.3214 

Fz-EMG LL  0.01230 0.01240 0.10230 0.01450 0.0265 0.2150 0.01230 0.0153 0.0123 0.1236 

Pz-EMG LL  0.32150 0.12450 0.01234 0.01230 0.0265 0.0145 0.03652 0.0125 0.0156 0.0231 

Cz-EMG LL  0.12540 0.01254 0.03650 0.12450 0.0123 0.2546 0.02650 0.3650 0.0125 0.1254 

O1-EMG LL  0.23650 0.02365 0.26530 0.35410 0.0214 0.2654 0.36520 0.1523 0.2635 0.3652 

O2-EMG LL  0.32160 0.21560 0.36520 0.12540 0.3652 0.2654 0.36540 0.2150 0.0124 0.3652 

T2-EMG LL  0.26540 0.23650 0.12500 0.32500 0.1587 0.0890 0.04590 0.1254 0.3541 0.2150 

T3-EMG LL  0.12470 0.23650 0.23140 0.23240 0.3654 0.2145 0.02400 0.0324 0.0325 0.0234 

T4-EMG LL  0.32150 0.21500 0.36540 0.21520 0.0124 0.0698 0.04570 0.0325 0.0478 0.0154 

T6-EMG LL  0.23698 0.36520 0.21500 0.32560 0.0214 0.0321 0.21500 0.0154 0.0126 0.3241 

ECG-EMG LL  0.12540 0.36520 0.12560 0.25410 0.1258 0.2154 0.12650 0.1236 0.2548 0.3215 
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Table 3:  Gain value of time series data  

Eeg Emgrl Emgll 

Fz 1.388 0.4426 

Pz 1.324 -0.4507 

Cz 1.041 2.8800 

 

From Table 1, it is seen that the features are extracted 

for the central line electrodes, occipital lobe, temporal 

lobe, ECG and EMG. Table 2 shows the correlation 

between the extracted features of EEG and EMG. It can 

be inferred that there is poor correlation between the 

electrodes O1, O2, T2, T3, T4, T6, ECG with EMGRL 

and EMGLL. A wide range of variation is given, 

However there is a strong correlation between the 

electrodes Fz, Pz, and Cz with EMGRL. 

The Table 3 shows that the modeling of time – series 

EEG and EMG signal, from this we can validate that the 

correlation between electrodes and modeling of the time 

series data. System Identification tool box is used to 

obtain the first order transfer function. From the transfer 

function the gain is calculated and is shown in Table 3. 

The RGA is used to pair the EEG and EMG signal for 

right leg and left leg. The RGA for time series data EEG 

and EMGRL and EMGLL is Equation 2, 3 and 4. 

From this the R1 shows the interaction between the 

electrodes Fz, Pz EMGRL and EMGLL. The array gives 

the maximum value for right leg when compared to the 

left leg. R2 shows the interaction between electrode Pz, 

Cz , EMGRL and EMGLL. From this array value, the 

right leg as maximum value. R3 shows the interaction 

between electrode Fz, Cz, EMGRL and EMGLL. In this 

we have maximum value for the right leg and minimum 

value for the left leg. Since Cz electrodes will have sleep 

waves, so the interaction during the epileptic event show 

the minimum value. 

Relative Gain Array of time series data: 

 

0.5163 0.4837
1

0.4837 0.5163
R

 
=  
 

 (2) 

 

0.8904 0.1096
2

0.1096 0.8904
R

 
=  
 

 (3) 

 

1.1303 0.1303
3

0.1303 1.1303
R

− 
=  − 

 (4) 

 

Conclusion 

It is also noticed that there are conflicting results 

about EEG and EMG. There is a strong correlation 

between the central line electrode and EMGRL for entire 

regions in the brain, whereas other electrodes show no 

correlation between the EMGRL and EMGLL. From the 

modeling of time series data, during the event the 

electrode Fz and Pz shows the high gain value and 

remaining electrode shows the low and negative gain 

value. The possible relation between the gain value can 

be validated by RGA. In RGA the array value shows that 

the maximum value for the electrode Fz, Pz, Cz and 

EMGRL and lowest value for the EMGLL. So that we 

conclude that there are significant variation in EEG 

electrode and EMG electrode during the epileptic event. 

Although the central line will pick up slow waves, 

during the occurrence of the event, it shows correlation 

between EMG signals. From this we conclude that for 

startle type epilepsy these electrodes Fz, Pz & Cz show 

the abnormalities in the brain.  
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