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Abstract: Tomato (Solanum peruvianum) Mi gene provides resistance to
whitefly (Bemisia tabaci), potato aphids and nematode making Mi a useful
source in integrated pest management program. The aim of this work was
to isolate, clone and sequence Mi;, gene from S. peruvianum. In addition,
physico-chemical identification of amino acids deduced from Mji; , gene was
done. Secondary (2D) and tertiary (3D) structures of Mi, , protein were also
predicated. Distinct amplicons of 620, 600, 3300 and 1993 bp were
successfully amplified using PCR amplification. The full-length DNA (5.4
kbp) and cDNA (4 kbp) of Mi;, gene was isolated using specific primers.
Fragments 620 and 600 bp cloned into Escherichia coli XL-1 Blue and
sequenced. Sequencing results of both assembled fragments (620 and 600
bp) joined at the overlap region (1440 bp). A BLAST search confirmed that
the DNA sequence from the amplified fragments was Mi;, gene. It shared
98% identity and deduced amino acids shared 97% identity with Mi;, gene
published in GenBank. An Open reading frame (ORF) of Mi,, protein
encoded for 479 amino acid residues with molecular weight 54.59 KDa and
isoelectric point (PI) 5.52 was calculated using Expasy’s ProtParam server.
2D and 3D structures of Mi, ; protein was analyzed using SOPMA and Swiss-
Prot software, respectively.
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Introduction

Tomato (Solanum lycopersicum L.) is an important
vegetable crop and it is produced worldwide under both
the glasshouse and open field (Kaur et al., 2014;
McDaniel et al., 2016; Alatar et al., 2017). Whitefly
(Bemisia tabaci) of Aleyrodidae family (Order:
Hemiptera), is among the most harmful insects of tomato
and causes significant yield loss. It effects on harvest
directly by phloem feeding and indirectly imputable to the
plant viruses transmission via their saliva such as Tomato
Yellow Leaf Curl Virus (TYLCV) (Momotaz et al., 2010;
Chen et al., 2015). A family of Mi genes arising from wild
tomato (Solanum peruvianum L.) confers resistance
against several of pests such as whiteflies (Bemisia
tabaci), potato aphids (Macrosiphum euphorbiae) and
root-knot nematodes (Meloidogyne sp.) (Nombela et al.,
2003; Pallipparambil et al., 2014).
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The Mi genes have three homologues, viz., Mi;,
Mi; ; and Mi; ;. Only Mi,, provides whitefly, aphid and
nematode resistance in tomato (Seah et al., 2004). Mi;,
gene produces a transcript of approximately 4 kbp that
encodes a putative protein of 1,257 amino acid residues
(Rossi et al., 1998). The protein is identified by the
presence of a nucleotide binding site (NBS) and a
leucine-rich repeat motif (LRR) (Milligan et al., 1998).
Proteins of the NBS-LRR motif structure composed of
the largest category of cloned plant resistance genes
against viruses, fungi, bacteria, insects and nematodes
(Dangl and Jones, 2001). Mi,, is a potential gene in
tomato integrated pest management program
(Nombela et al., 2003; Mahfouze et al., 2015).

The aim of this work was to isolate, clone and
sequence Mi;, gene from S. peruvianum. In addition,
physico-chemical identification of amino acids deduced
from Mi;, gene was done. Secondary (2D) and tertiary
(3D) structures of Mi, , protein were also predicated.
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Materials and Methods
Plant Materials

Young leaves of tomato (Solanum peruvianum)
plants were obtained from Indian Agricultural Research
Institute (IARI), New Delhi, India. All the collected
plant material were kept at -80°C for storage.

Design of Oligonucleotide Primers for Mi; , Gene

A total of four primers with different degrees of
specificity were designed according to the public
sequence of Mi;, gene (GenBank accession number
AF039682.1) using SMS Sequence Manipulation Suite
(http://bioinformatics.org/sms2/index.html). TomMi3 and
TomMi4 primers containing chimeric regions
complementary to one another. These chimeric
overlapping sequences, which amplified Mi; , gene were
mixed and annealed at the overlaps. Primers used in this
study were designed with various factors in
consideration: GC content, melting temperature for
primer set, formation of hairpin loops and dimerization
of oligos. Various oligonucleotides used in this study are
listed in Table 1. Primers were synthesized by Sigma
Aldrich Chemicals, Bangalore, India.

Extraction of Genomic DNA and PCR Amplification
of Mi; ; Gene

DNA was extracted from fresh S. peruvianum
tomato leaves using CTAB method (Fulton et al., 1995).
PCR reactions contained sterile distilled water 37.25, 5.0
pL 10xPCR buffer (Promega Corp.), 1.5 uL. MgCl, (50
mM), 1.0 pL dNTPs mix (10 mM), the two primer
combinations 3.0 puL (1.5 pL each = 150 ng), 0.25 pL
Tag DNA polymerase, recombinant (Biotools, Spain) (5
Units/uL). 2.0 uL of DNA template (~400 ng) was
added to the reaction. PCR cycles were 94°C for 5 min;
35 cycles of: 94°C for 30s, Annealing temperature
(AT°C) as shown in Table 1 for 1 min, 72°C for 3 min;
72°C for 10 min. PCR reactions were performed in Bio-
Rad, C1000 thermal cycler, California, USA.

Isolation of Full Length DNA Mi; , Gene

PCR reactions contained sterile distilled water 36.8,
5.0 uL 10xPCR buffer B (Promega Corp.), 5 uL dNTPs
(10 mM each), the two primer combinations (F.P.
TomMi3and R.P TomMi4) (25 mM) (1.0 pL each), 0.2
puL Takara Tag DNA polymerase (5 Units/uL). 1 uL of
DNA template (~500 ng) was added to the reaction. PCR
was performed as follows: 94°C for 1 min; then 94°C for
15s, 60°C for 30s, 72°C for 6 min, 40 cycles; followed
by 72°C for 10 min and held at 4°C.

Reverse Transcriptase (RT-PCR) and Isolation of
Full Length of cDNA

Total RNA was extracted from tomato leaves using
Trizol reagent according to the manufacture’s
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recommended protocol (Sigma, India). cDNA was
synthesized from total RNA (1 pg/sample) using
Reverse transcriptase kit and oligo-DT primers (Thermo
Scientific, UK) in 10 pL reaction at room temperature
for 15 min and then heated at 65°C for 10 min to
inactivate DNasel. The DNasel-treated total RNA was
then reverse-transcribed using the RT-PCR kit (Thermo
Scientific, Uk). Mi;, cDNA was PCR amplified using
F.P. TomMi3and R.P TomMi4 primers. The p-actin
gene-specific primers (Table 1) were added to the same
RT-PCR reactions as internal standards for RNA
quantity. PCR reactions of Mi;, amplification contained
sterile distilled water 36.4, 10 uL 10x PCR buffer HF
(Promega Corp.), 1.0 pL dNTPs (10 mM), the two primer
combinations (F.P. TomMi3and R.P TomMi4) (0.3 pL
each) (0.5 uM), 0.5 pL Phusion 7ag DNA polymerase
(Thermo Secientific, UK) (0.02 Units/uL). 1.5 puL of
DNA template (~400 ng) was added to the reaction. PCR
cycles were 98°C for 3 min; 35 cycles of: 98°C for 30s,
64.3°C for 30s, 72°C for 3 min; 72°C for 10 min. Similar
PCR conditions were used for the 3 actin primers, with the
exception that the annealing temperature was 55°C.

PCR products for all samples was electrophoresed on
0.8% agarose containing ethidium bromide (0.5 pg
mL™") in 1x TBE buffer (89 mM Tris-HCIl, 89 mM Boric
acid, 2.5 mM EDTA, pH 8.3) at 75 constant volt and
determined with UV transilluminator. The size of each
fragment was determined with reference to a size marker
of 1 kbp DNA ladder (Thermo Scientific, UK).

Cloning of the Mi; , Gene

Fragments of the expected size, 620 and 600 bp for
Mi, ; gene was excised from the agarose gels and further
purified using Gene Jet Gel DNA purification kit
(Thermo Scientific, UK). The quality and concentration
of the purified products was confirmed by gel-
electrophoresis in a 0.8% agarose gel in 1XTBE buffer
and by measuring the absorbance ratio at 260 nm
wavelength using a NanoDrop ND-1000
spectrophotometer. The purified PCR products were
ligated into pPGEM®-TEasy vector (Promega, Mannheim,
Germany). Ligation reactions were prepared containing
the appropriate quantities of vector and insert (1:3), 1 puL
of the 2 x ligase buffer and 2.5 U T4 DNA ligase supplied
with the kit. The reaction volume was made up to 10 uL
with sterile dsH,O and the reactions were incubated at 4°C
overnight. Ligated plasmids were transformed into E. coli
XL-1 Blue competent cells. Isolation of plasmid DNA
from E. coli XL-1 Blue was done by the alkaline lysis
method according to Sambrook ef al. (1989).

Digestion of Plasmid DNA with Restriction
Enzyame EcoR1

To confirm the presence of positive intact clones,
restriction enzyme digestion of plasmid DNA was also
carried out with EcoR1 at 37°C overnight.
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Table 1: Primers used in this study.

GC  Annealing Molecular Nucleotide
Primers Single nucleotide sequence (5°-3") (%)  temperature (AT)°C size (bp) position
IMOF1 AGCCATGCTTGCTTCACTTT 45.0 55 998 2395-2414
IMORI1 AGAGGACCCACAGTGGTTTG 55.0 3373-3392
F.P. TomMil TGAAAG CCC CAAATT CATCT 40.0 60 620 1201-1220
R.P. TomMi 1 CCATGC ACGAAG GTC AAAAT 45.0 1801-1820
F.P. TomMi2 ATT TTG ACC TTC GTG CATGG 450 60 600 1801-1820
R.P. TomMi2 ATGGCTTGAGGTGATGTGGt 50.0 2381-2400
F.P. TomMi3 GGATCCAATAGCTTCAACATTATT 333 58 3300 4-21
R.P. TomMi3 CAATAAGATACCTCTTTCCAAACAGTTGTTTCCGC 40.0 1931-1965
F.P. TomMi4 GCGGAAACAACTGTTTGGAAAGAGGTATCTTATT 40.0 58 1993 1931-1964
R.P. TomMi4 TCTAGAGGAATCTCATCACAGGA 434 3907-3923
B-Actin F ACAATGAGCTCCGAGTTGCT 450 55 900 -
B-Actin R TTGATCTTCATGCTGCTTGG 50.0 -
Sequencing synthesized by RT-PCR using oligodT as 5' and 3' primers.

Partial nucleotide sequence of Mi; , gene was done by
Applied Biosystems (Inst model/Name 3100/3130XL-
1468-009, India wusing gene-specific primers. The
sequence was aligned with corresponding sequences
from the database using BLAST from the website
http://www.ncbi.nlm.nih.gov/blast. Multiple alignments
and phylogenetic tree of protein were performed using
CLC Main Workbench 5 program, Denamark.

2D and 3D Structures of Mi, ; Protein

The primary amino acid sequence of Mi;, protein
was subjected to predict its secondary and tertiary
structures using SPOMA (Geourjon and Deleage, 1995)
and a SWISS-MODEL workspace servers
(http://swissmodel.expasy.org/workspace), respectively
(Arnold et al., 2000).

Results
Amplification of Mi,; ; Gene

PCR was used for the amplification of Mi; , gene
by wusing different specific primers. These primers
designed from conserved region of Mi; , gene available in
the GenBank (AF039682.1). The expected sizes of
amplicons were 998 (Bendezu, 2004), 620, 600, 3300 and
1993 bp of FIMO/RIMO, F.P. TomMil/R.P. TomMil,
F.P. TomMi2/R.P. TomMi2, F.P. TomMi3/R.P. TomMi3
and F.P. TomMi4/R.P. TomMi4 primers, respectively as
shown in Fig. 1.

Isolation of Full Length Genomic DNA and ¢cDNA
of Target Gene

The size of Mi, , gene using the specific primers the F.P.
TomMi3 and R.P. TomMi4 was 5.4 kb (Fig. 2). In the
present study, the total RNA was isolated using TRIzol
reagent. The RNA profile on 0.8% agarose gel indicated
the intactness of different subunits of RNA. cDNA was
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The cDNA product of around 4 kb is shown in Fig,. 3.
Cloning of Mi; , Gene Fragments

The fragments of the expected sizes 620 and 600 bp
were excised from agarose gels and the DNA products
were cleaned up by a Gene Jet Gel DNA purification Kit
(Thermal Scientific, UK). The quality and concentration
of the purified products was confirmed by gel-
electrophoresis in a 0.8% agarose gel by measuring the
absorbance. The purified PCR products were ligated into
pGEM®-T-Easy  vector  (Promega,  Mannheim,
Germany). To screen positive colonies, four or five
white colonies were picked from pGEM: Mi, , construct,
Mini-preparations were performed with all colonies. To
determine the insert orientation within pGEM-T-Easy
vector was performed by digestion of EcoR! (Fig. 4 and
5) and sequencing. Fig. 4 and 5 indicated that the
transformation with pGEM: Mi;, was successful and
plasmid with correct insert orientation.

Multiple Sequence Alignments and Phylogenetic
Tree

Sequencing results of both assembled fragments
(620 and 600 bp) joined at the overlap region (1440
bp) (Fig. 6). The sequence was submitted at the GenBank
with the accession number KU886265. BLAST analysis
showed that the Mi; , gene under study had the identity
ranged 98-82% to the root-knot nematode resistance
Mi,; , genes recorded in GenBank (Table 2). On the
other hand, the deduced amino acids sequence of Mi; ,
protein gave the homology 97-61% (Table 3). The amino
acids sequence of Mi;, protein was aligned with six
different accessions of other Mi proteins published in
GenBank by CLC Main Workbench 5 program,
Denamark (Fig. 7). The phylogenetic tree applied by
using CLC Main Workbench 5 program, Denamark with
the UPGMA method is presented in Fig. 8. A close
relationship was found between our Mi,, protein and
other NBS-LRR proteins (Fig. 8).
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Table 2: Sequences alignments of Mi; , gene under study using BLAST analysis.

Accession No. Identity
U65668.1 Lycopersicon esculentum putative Mi-1 copy 2 nematode-resistance gene 98%
AF091048.1 L.esculentum disease resistance protein (Mi-1) gene, complete cds 98%
U81378.1 L. esculentum disease resistance gene homolog Mi-copy2 gene, complete cds; 98%
resistance gene pseudogene, complete sequence; disease resistance
DQ863287.1 Solanum sp. VFNT NBS-LRR resistance protein-like protein (Mi-1.4) gene, complete cds 98%
NM 001247134.1 S. lycopersicum root-knot nematode resistance protein (Mi-1.2), mRNA 98%
DQ465824.1 Capsicum annuum root-knot nematode resistance protein gene, complete cds 98%
DQ863290.1 S. lycopersicum NBS-LRR resistance protein-like protein (Mi-1C) gene, complete cds 98%
DQ863293.1 S. lycopersicum truncated NBS-LRR resistance protein-like 97%
protein (Mi-1G) gene, complete cds
U65667.1 L. esculentum putative Mi-1 copy 1 nematode-resistance gene 96%
NM_001247693.1 S. lycopersicum plant resistance protein (Mi-1.1), mRNA 96%
XM _015303248.1 S. tuberosum putative late blight resistance protein homolog 92%
R1B-17 (LOC107058010), mRNA
XM 015304640.1 S. tuberosum putative late blight resistance protein homolog R1A-3 90%
(LOC102582957), transcript variant X1, mRNA
FJ231739.1 C. annuum NBS-LRR root-knot nematode resistance protein mRNA, complete cds 85%
XM_009616696.1 Nicotiana tomentosiformis putative late blight resistance protein homolog R1A-3 84%
(LOC104107800), transcript variant X1, mRNA
XM_009772561.1 N. sylvestris putative late blight resistance protein homolog R1A-3 (LOC104221492), 82%
transcript variant X2, mRNA
Table 3: Sequences alignments of Mi, , protein under study using BLAST analysis.
Accession No. Identity
NP_001234063.1 Root-knot nematode resistance protein [Solanum lycopersicum) 97%
ABE68835.1 Root-knot nematode resistance protein [ Capsicum annuum] 96%
ABI96218.1 Truncated NBS-LRR resistance protein-like protein [S. lycopersicum] 95%
AAC32253.1 Disease resistance gene homolog Mi-copy! [S. lycopersicum] 94%
XP 015078202.1 Putative late blight resistance protein homolog R1A-3 [S. pennellii] 92%
XP 015158734.1 Putative late blight resistance protein homolog R1B-17 [S. tuberosum] 88%
XP_004240523.1 Putative late blight resistance protein homolog R1A-3 [S. lycopersicum] 87%
XP_015160126.1 Putative late blight resistance protein homolog R1A-3 isoform X1 [S. tuberosum] 85%
XP_015160128.1 Putative late blight resistance protein homolog R1A-3 isoform X3 [S.tuberosum] 84%
XP_006340022.1 Putative late blight resistance protein homolog R1A-3 [S. tuberosum] 82%
ACI43068.1 NBS-LRR root-knot nematode resistance protein [C.annuum) 79%
XP_015162455.1 putative late blight resistance protein homolog R1B-8 [S. tuberosum] 78%
AJW77761.1 Pvr9-like protein 1 [C. annuum] 75%
XP_009608035.1 Putative late blight resistance protein homolog R1A-4 isoform X1 [Nicotiana tomentosiformis] 74%
XP_009763450.1 Putative late blight resistance protein homolog R1B-12 isoform X3 [N. sylvestris] 70%
XP_004240205.1 Putative late blight resistance protein homolog R1A-3 isoform X2 [S. lycopersicum] 61%
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Fig. 1: PCR products of the Mi, , gene from S. peruvianum laves using four specific primers (a) 998 bp, (b) 620 bp,(c) 1993 bp and (d) 3300
bp. Lane M: 1 kb DNA ladder , lanes 1 and 2: PCR amplicons of M, , gene. The arrow indicates amplification of the Mi, , gene.
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Fig. 2: PCR amplification of the Mi, , gene from S. peruvianum leaves using F.P.TomMi3and R.P. TomMi4 primers. Lane M: 1 kb
DNA size marker lane 1: PCR product of Mi, , gene.
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Fig. 3: Electrophoresis of cDNA on 0.8% agarose gel using F.P.TomMi3 and R.P.TomMi4 primers. Lane M: DNA size marker 1
Kbp. (a) lane 1: ampilcon size of B-actin cDNA. (b) lanes 1 and 2: size of PCR product of Mi; , cDNA.
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Fig. 4: EcoR] restriction digests of pGEMT plasmid (3015 bp) contained the insert (620 bp). Lanes 1,2 and 5 undigested clones.
Lanes 3 and 4 featured the correct insert orientation digested clones.
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Fig. 5: EcoR1 restriction digests of pGEMT plasmid (3015 bp) contained the insert (600 bp). Lane 2 undigested clone. Lanes 1, 3
and 4 featured the correct insert orientation digested clones.
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Fig. 7: Alignment of Mi, , protein from this study with the reference Mi, , proteins recoded in GenBank.
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Amino Acids of Mi, ,

The Coding DNA Sequence (CDS) of Mi,, protein
encoded for 479 amino acid residues contained on one
stop codon (translate frame-3) (Fig. 6). The molecular
weight was 54.59 KDa with isoelectric point (PI) 5.52
and extinction coefficient 49765 M 'em™ at 280 nm
measured in water. Mi,, protein consisted of 20 amino
acids; 177 aliphatic (36.95%); 32 aromatic (6.7%); 14
sulphur (2.9%); 77 basic (16.1%); 105 acidic (22%); 55
aliphatic hydroxyl (11.5%) amino acids. In addition, 235
tRNAsynthetase class I (49.1%) and 244 tRNAsynthetase
class II (51%). Furthermore, it contained on 78 negatively
charged residues (Asp + Glu) and 64 positively charged
residues (Arg + Lys). Besides, Leucine (L) was the main
amino acid in sequence (71, 14.8% frequencies); followed
by Aspartic Acid (D) and Glutamic Acid (E) (39, 8.1%
frequencies). On the contrary, Cysteine (C) and

Tryptophan (W) were the lowest amino acids in residue
(6, 1.8% frequencies) (Table 4).

Secondary Structure (2D) Model of Mi, ; Protein

Secondary structure predication of Mi;, protein by
using SPOMA server (Geourjon and Deleage, 1995)
showed that Mi;, composed of 232 o-helix (48.4%), 77
B-sheets (16.1%), 39 Beta-turn (8.14%) and 131 coil
(27.4%) (Fig. 9).

3D Structure Modeling of Mi; ; Protein

The three-dimensional (3D) structure protein was
carried out by using SWISS-MODEL workspace server.
The predicated structure of Mi, , under study was similar
to Solanum lycaopersicum root-knot nematode resistance
protein (NP_001234063.1). Both had monomers,
consisted of o-helix and p-sheets with a compact
structure, as shown in Fig. 10.
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Fig. 8: Phylogenetic tree of Mi, , protein (Query) using UPGMA with six disease resistance proteins class NBS-LRR in GenBank.
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Fig. 9: Secondary structure protein of Mi, , protein under study using SPOMA server. H = a-helix, e = -sheets, t = Beta-turn, ¢ = coil.
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(A)

Fig. 10: Predicted 3D structure model of Mi,, protein under study (A) and compared with S. lycopersicum root-knot nematode
resistance protein (NP_001234063.1)(B) using a Swiss-model server.

Table 4: Amino acids counts and % frequencies of Miy , protein under study.

No. Amino acid Count  %Frequency No. Amino acid Count % Frequency
1 Alanine (A) 20 4.2 15 Proline (P) 19 4.0
2 Arginine (R) 21 4.4 16 Serine (S) 34 7.1
3 Asparagine (N) 19 4.0 17 Threonine (T) 21 4.4
4 Aspartic Acid (D) 39 8.1 18 Tryptophan (W) 6 1.3
5 Cysteine (C) 6 1.3 19 Tyrosine (Y) 11 2.3
6 Glutamine (Q) 8 1.7 20 Valine (V) 32 6.7
7 Glutamic Acid (E) 39 8.1 21 Aliphatic (G,A,V,L,I) 177 37.0
8 Glycine (G) 21 4.4 22 Aromatic (F,W,Y) 32 6.7
9 Histidine (H) 13 2.7 23 Sulphur (C,M) 14 2.9
10  Isoleucine (I) 33 6.9 24 Basic (K,R,H) 77 16.1
11 Leucine (L) 71 14.8 25 Acidic (D,E,N,Q) 105 22.0
12 Lysine (K) 43 9.0 26 Aliphatic hydroxyl (S,T) 55 11.5
13 Methionine (M) 8 1.7 27 tRNAsynthetase class I (E, 235 49.1
Q.R,CM,V,ILY,W)
14  Phenylalanine (F) 15 3.1 28 tRNAsynthetase class II (G, 244 51.0

AP,S,T,H,D,N,K,F)

Total number of negatively charged residues (Aspartic Acid+ Glutamic Acid) =78

Total number of positively charged residues (Arginine+Lysine) = 64

Discussion

The whitefly is an important insect pest of many crop
plants, including tomato. Many wild tomato species
contains Mi gene, which provides resistance to whitefly
(McDaniel et al., 2016). The wild tomato (S.
peruvianum) resistance gene Mi encodes a protein with
CC-NBS-LRR motifs (Milligan et al., 1998). Mi;, is a
single dominant gene in tomato, which provides
resistance against certain phloem-feeding herbivores
such as whiteflies, aphids, psyllids and root-knot
nematodes (Nombela et al., 2003; Pallipparambil et al.,
2014; Chen et al., 2015). Schaff et al. (2007) mentioned
that Mi gene  provides  resistance  of  tomato,
glycosyltransferase and extension may play a main role
in the cell wall synthesis, which is a fundamental
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defence against root knot nematode. The NBS-LRR class
of R genes could be sub-divided into two main groups
depend on existence of domains identical to the 7o/l and
interleukin-1 receptor or coiled-coil (CC) domain at the
amino terminal (Bhattarai et al., 2007). In this study, we
designed four pairs of primers for the amplification of
Mi;, gene from GenBank accession number
AF039682.1. Primers TomMil, TomMi2, TomMi3 and
Tom Mi4 amplified 620, 600, 3300 and 1993 bp DNA
fragments, respectively. Moreover, primers IMOF1 and
IMORI1 amplified 998 bp (Bendezu, 2004). We isolated
full length DNA and cDNA of Mi;, gene from S.
peruvianum tomato leaves using the primers F.P.
TomMi3 and R.P. TomMi4. Sequencing results of both
assembled fragments (620 bp and 600 bp) joined at the
overlap region confirmed the Mi;, gene sequence.
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BLAST analysis showed that the Mi; , gene under study
(1440 bp) was homologous totomato root-knot
nematode resistance genes in the GenBank.
Nucleotide sequence of Mi;, gene under study was
encoded 479 amino acids with molecular weight 54.59
KDa and PI was 5.52, which showed that Mi, ; protein
was acidic. The PI is significant in protein purification
because it represents the pH where solubility is
typically minimal. Here, the protein isoelectric point
signifies where mobility in an electro-focusing system
is zero and in turn, the point where the protein will
aggregate (Geourjon and Deleage, 1995). Chen et al.,
(2006) used the specific primers AM-FW1 and AM-
RV1 for the isolation of full length DNA of Mi,,
resistance gene of 5.4 kb. They have cloned Mi,,
gene into the pDONR201 vector. Recombinant
plasmid pDMi was confirmed by digestion by Apal
and Nrul restriction enzymes and by sequencing. The
results indicated that the amplicon 5367 bp was long.
Also, observed that the DNA fragment had two
introns, contained on an Open reading frame (ORF) of
3774 bp encoding 1257 amino acids. The BLAST
results found that the predicted ORF of Mi; , gene had
99% identity with tomato root-knot nematode
resistance gene Mi (AF039682) recorded in GenBank,
which is a member of the leucine zipper, nucleotide
binding, leucine-rich repeat family of plant genes.

In the present study, we predicated the secondary and
tertiary structures of Mi;, protein using SPOMA and
SWISS-MODEL  workspace servers, respectively
(Geourjon and Deleage, 1995; Arnold ef al., 2006). The
results showed that Mi,, protein composed of 232 a-
helix (48.4%), 77 P-sheets (16.1%), 39 Beta-turn
(8.14%) and 131 coil (27.4%). The 3D model of the
Mi, , is described as consisting of an alpha helix and
several beta pleated sheets with a compact structure. It
is similar to the 3D crystal structure of S. Lycopersicum
root-knot nematode resistance protein
(NP_001234063.1). This is the first report describing
Mi,, protein isolated from S. peruvianum. In this
research, we provided information on the three-
dimensional structure (3D) of Mi;, protein that
associate directly to the corresponding R resistance
proteins of the NBS-LRR class. The determination of
the crystal structure of Mi proteins will help us to
understand the protein-protein interactions between
the R protein of the tomato and the Avr protein of the
whitefly as confirmed in ‘gene for gene’ model. In
addition, it provides us to comprehend the main role
of an intermediary protein complex, which has been
visualized in ‘guard theory’ of plant disease resistance
(Chisholm et al., 2006; Chattopadhyaya and Pal,
2008). Dorna et al., (2014) obtained that the three-
dimensional protein structure (3D) by protein
crystallography (X-ray) provides to examine folds and
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motifs in the proteins, molecular folding, phylogenetic
and structure/function relationships. One of the
principle research troubles in proteomics is the
prediction of the tertiary structures (3D). Proteins are
long residues composed of 20 different amino acid
sequences that in physiological conditions assume an
alone 3-D structure. Information on the protein
structure provides the study of biological operations
with detail. The sequence-protein—structure paradigm
(the “lock-and-key” theory) tells that the protein can
perform its biological operation only by folding in to a
singular, structured shape estimated by its amino acid
residue (Anfinsen, 1973). Presently, it has been known
that not all protein operations are linked to a folded shape
(Tompa and Csermely, 2004; Dunker et al., 2008). Some
proteins are unfolded or disordered to achieve their
functions (Gunasekaran et al., 2003). These proteins are
known Intrinsically Disordered Proteins (IDP) and act
about 30% of the protein sequences.

Conclusion

Up to now, there have been no researches on the
secondary (2D) and tertiary (3D) structures of Mij,
protein. This is the first report describing Mi; , protein
isolated from S. peruvianum. The prediction of (3D)
modeling is among the research troubles in structural
bioinformatics. The 3D structure of a protein that has
no templates in the Protein Data Bank (PDB) is a very
difficult. A Knowing of the 3D structure of the Mi, ,
protein provides very important data on its the
biological function in the plant cell.
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