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Abstract: In this study, we used ISSR-suppression methods to develop a 

set of SSR markers for Duabanga moluccana. It is an indigenous fast 

growing tropical tree species. A total of 44 SSR regions were identified and 

specific primer pairs were designed. The SSR motifs contained perfect 

compound with 24 (54.5%) occurrences, followed by the imperfect 

compounds with 8 (18.2%), simple perfect with 8 (18.2%) and the simple 

imperfect repeats with 4 (9.1%). The newly identified SSR markers were 

characterized by screening 20 individuals of D. moluccana seedlings. 

Among 43 primer pairs tested, 25 (58.1%) SSR markers amplified the 

desired PCR products and 115 alleles were detected. The number of alleles 

per locus ranged from 2 to 8, with a mean value of 4.60. Polymorphism 

Information Content (PIC) values ranged from 0.225 to 0.792, with an 

average of 0.604. A success rate of transferability of D. moluccana SSR 

markers varied, ranging from 84% in Duabanga grandiflora, 36% in 

Neolamarckia cadamba, 24% in Canarium odontophyllum and 28% in 

Shorea parvifolia. These SSR markers herein could be used to generate 

useful baseline genetic information for effective selection of plus trees, 

provenance trials and establishment of forest Seed Production Areas 

(SPAs) of D. moluccana in the selected forest reserves for tree plantation 

and improvement activities. Besides, the transferability of the newly 

developed SSR markers across a range of species and genera suggests their 

potential usefulness for a variety of population genetic studies. 

 

Keywords: Duabanga moluccana, Simple Sequences Repeats (SSRs), 
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Introduction 

The demand for quality wood is projected to increase 

dramatically in line with global consumption 

requirements. This increasing demand is mainly forced 

by global population growth and rise in socio-economic 

levels (FAO, 2010). The global consumption of 

industrial round wood is estimated to increase from 

1,707 million m
3
 in 1990 to 2,436 million m

3
 in 2030 

(FAO, 2009). However, the slow-growing of natural 

forests are unable to meet current global demand for 

wood, resulting in the loss and degradation of natural 

forests (Fenning and Gershenzon, 2002). The 

development of high-yielding with short rotation 

plantation forests is vital to supply the bulk of 

humanity’s wood needs on a long-term basis. It is also 

important to ensure a sustainable supply of high genetic 

quality seedlings for planted forest development 

worldwide to maximize adaptability and yield potentials 

under stress-site condition (Goel and Behl, 2001). 
With advances in genomics research, there has been a 

remarkable progress in the development of an array of 
potential molecular markers, including RAPD, RFLP, 
AFLP, SSRs and other markers for monitoring forest 
tree improvement activities, such as measuring genetic 
variation in breeding populations, germplasm 
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identification, verifying controlled crosses and 
estimating seed orchard efficiencies (Neale et al., 1992). 
As explained by Westman and Kresovich (1997), DNA-
based markers play a vital role to detect variation for 
both coding and non-coding DNA sequences from 
nuclear and organelle genomes. Nowadays, these 
molecular markers have proven their utility in fields like 
taxonomy, physiology, embryology, genetic engineering, 
etc (Joshi et al., 1999; Mondini et al., 2009). 

Simple Sequence Repeats (SSRs) or microsatellites 

are becoming a popular DNA marker for genetic analysis 

in plants. According to Saha et al. (2003), SSRs are a 

class of repetitive DNA that is a ubiquitous component 

of eukaryotic genomes. Such loci are found scattered 

throughout the genome and inherited in a Mendelian 

fashion (Moon et al., 1999). SSRs are consisting of a short 

motifs, typically mono-, di-, tri-, or tetranucleotide repeats, 

which are repeated several times (Mahalakshmi et al., 

2002). They almost invariably show extensive 

polymorphism, due to the variability in SSR repeat length 

as a consequence of slippage during DNA replication or 

unequal crossing over. The hyper-variability (with 

mutation rates ranging from 10
−2

-10
−6 

per locus per 

generation) in species and populations is the key feature of 

SSRs as molecular markers (Chistiakov et al., 2006). To 

exploit SSRs as DNA based-markers, they are assayed by 

PCR with specifically designed primers to match unique 

sequences flanking the SSR region. 

SSRs display high information content, as they are 

co-dominant and highly multiallelic. Furthermore, they 

are usually transferable across closely related species and 

it has been reported some classes of SSRs constitute an 

important source of quantitative genetic variation, coding 

for functional elements of protein molecules and serve as 

regulatory elements of transcription (Kashi et al., 1997; 

Collevatti et al., 1999). Therefore, these markers have 

contributed greatly to the understanding of mating 

systems and pollen dispersal patterns (Garcia et al., 

2005), construction of genetic maps (Brondani et al., 

2006) and forensics (Craft et al., 2007). Additionally, the 

attractive attribute of this marker is especially in the case 

of species which show a low level of genetic variation, 

inbred populations and geographically close populations 

(Rakoczy-Trojanowska and Bolibo, 2004). Butcher et al. 

(1999) and Ho et al. (2006) also reported the use of SSR 

markers in monitoring the genetic effects of forest 

management practices and fragmentation on genetic 

diversity and gene flow in several forest tree species. 

Conventionally, isolation of SSR loci involves 
construction of a genomic library, screening with repeat 
oligonucleotide probes for the identification of positive 
clones, designing and synthesis of primers (Roy et al., 
2004). However, these tasks are usually labour-
intensive, time-consuming and expensive because the 
proportional of SSRs to the entire genome is generally 
low (Lian et al., 2001). In addition, the recovery rate of 

useful SSRs is low due to non-specific amplification 
and monomorphic loci (Hayden and Sharp, 2001). An 
alternative method is by searching the SSR-containing 
sequences from the available databases, e.g. EMBL 
and GenBank. This method is cost-effective, simple 
and relatively quick but only applicable to species that 
are well represented in the databases             
(Rakoczy-Trojanowska and Bolibok, 2004). 

Duabanga moluccana Blume or locally known as 

sawih is a timber species belonging to the family 

Sonneratiaceae. The wood of D. moluccana confers 

various advantages for the timber industry including 

production of wood works and products, such as 

plywood, veneer, blockboard and interior joinery. 

Additionally, it is suitable for interior paneling, matches, 

moulding and pulping (CIRAD, 2003). Owing to its fast-

growing ability, D. moluccana has been now identified 

as a species of great potential for planted forests 

development in Sarawak. To date, the genetic 

information and molecular markers of this species are 

still scanty. Thus, the objectives of this study were to 

develop a set of SSR markers specific for genotyping D. 

moluccana using ISSR-suppression methods and to 

evaluate the possibility of cross-species transferability of 

SSRs among tree species. Two ISSR-suppression 

methods were applied in developing SSR markers for D. 

moluccana as described by Lian et al. (2001) and a 

modified protocol of Lian et al. (2006). As explained by 

Lian et al. (2001), such methods are relatively simple 

without enrichment and screening procedures. The 

methods have been widely used by many researchers in 

developing SSR markers for species with little genomic 

information (Tamura et al., 2005; Sui et al., 2009; 

Qosim et al., 2011; Xie et al., 2011; Liu et al., 2013). 

Materials and Methods 

Plant Materials and DNA Isolation 

The fresh young leaf samples of D. moluccana 

seedlings were collected from the nursery of the Forest 

Tree Seed Bank, Sarawak Forestry Corporation (SFC), 

Sarawak. Total genomic DNA was isolated using a 

modified CTAB method (Doyle and Doyle, 1990). 

Cloning and Sequencing of ISSR Amplified 

Fragments and Primer Design 

Five SSR primers, namely (AC)10, (AG)10, (GTG)6, 

(AC)6(AG)5 and (TC)6(AC)5 were used to amplify the 

fragments flanked by two SSR sequences arranged in 

opposite orientations from the DNA of D. moluccana. 

PCR was performed using a Palm Cycler (Corbett, 

USA). Reaction in a volume of 25 µL consists of 20 ng 

of genomic DNA, 10 pmol of the primer, 0.2 mM of 

each dNTP, 1× PCR buffer, 2.5 mM MgCl2 and 0.5 U of 

Taq DNA polymerase (Invitrogen, USA). The PCR was 
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performed at 94°C for 2 min, 40 cycles at 94°C for 30 

sec, 60°C for 30 sec and 72°C for 1 min, followed by 

final extension at 72°C for 10 min. The amplified PCR 

products were purified from agarose gel by using 

QIAquick
® 

Gel Extraction Kit (QIAGEN, Germany) and 

then ligated into pGEM
®
-T Easy Vector System 

(Promega, USA). Colony PCR with M13 forward and 

reverse sequence primers were performed to identify the 

presence of positive clones. Then, the recombinant 

plasmid was isolated and purified according to the 

Wizard
®
Plus SV Minipreps DNA Purification system 

protocol (Promega, USA). The recombinant plasmids 

DNA were sequenced using the ABI Prism
TM 

Bigdye
 TM

 

terminator cycle sequencing Ready reaction kit V.3.1 

(Applied Biosystems, USA) and analysed on a ABI 

3730XL capillary DNA sequencer (Applied Biosystems, 

USA). Subsequently, an Initiating Primer (IP1) designed 

from the sequenced region at one end of the SSR and for 

nested PCR another IP2 based on the sequence between 

IP1 and the SSR sequence. IP1 and IP2 primers were 

designed using PRIMER 3.0 v.0.4.0 (Rozen and 

Skaletsky, 2000). These two primers were used in order 

to determine other sequence flanking the SSRs by a 

genome walking method. All the primers were designed 

based on the following criteria: Primer length of 20-25 

bp, GC content 40-60% and Tm between 57-63°C. The 

primers were synthesized by Bio Basic Inc. (Canada). 

Construction of DNA Libraries 

Adaptor-ligated, restricted DNA libraries were 

constructed according to Siebert et al. (1995). 

Approximately 7 µg of DNA was separately digested in 

a 100 µL reaction volume with 100 U of a restriction 

enzyme (AluI, EcoRV, HaeIII, RsaI and SspI) at 37°C 

for overnight. Then, DNA was extracted with CIA (24:1) 

and precipitated by adding 
1
/10 volume of 3 M NaOAc 

(pH 5.2) and 3 volumes of 99.5% ethanol. The mixture 

was precipitated at -20°C for at least 30 min and 

following by centrifugation at 13,000 rpm for 5 min. 

Subsequently, the pellet was washed with 70% ethanol, 

dried before dissolved in 40 µL of ddH2O. The digested 

DNA was then ligated to 1.4 µg of a blunt adaptor 

overnight at 16°C using a T4 DNA Ligation Kit 

(Invitrogen, USA). After treatment, the ligated fragments 

were precipitated by ethanol as described above, dissolved 

in 180 µL of ddH2O and stored at -30°C until future 

analysis. As Adaptor Primers (AP) for nested PCR, AP1 

(5’-CCATCCTAATACGACTCACTATAGGGC-3’) 

and AP2 (5’-CTATAGGGCACGCGTGGT-3’) were 

also prepared. 

Identification of the Sequence beyond the 

Determined ISSR Sequences 

Two steps PCR amplification from adaptor-ligated 

restricted DNA libraries were performed using the primers 

prepared based on sequences of each ISSR fragment (IP1 

and IP2) and adaptor primer (APl and AP2). A primary 

reaction was conducted in a 25 µL reaction mixture 

containing 1 µL of the adaptor-ligated DNA, 0.2 mM of 

each dNTP, 5 pmol adaptor primer AP1 and ISSR-specific 

primer IP1, 1× PCR buffer, 1.5 mM MgCl2 and 0.5 U of 

Taq DNA polymerase (Invitrogen, USA). The PCR was 

performed using Mastercycler Gradient Thermal Cycler 

(Eppendorf, Germany) with temperature cycling 

conducted as follow: Initial denaturation step at 94°C for 2 

min, followed by 35 cycles of 1 min at 94°C, 30 sec at an 

annealing temperature of 62°C and 2 min at 72°C, 

followed by l cycle of 1 min at 94°C, 30 sec at an 

annealing temperature of 62°C and 5 min at 72°C and 

concluded with a 10 min extension at 72°C. The 

secondary reaction was conducted with 1 µL of a 100-fold 

dilution of the primary PCR product using the adaptor 

primer AP2 and ISSR-specific primer IP2. The same 

reaction mixture and PCR conditions as in the primary 

PCR was used, except that the annealing temperature and 

cycle number were reduced to 60°C and 29 cycles. The 

PCR product was examined using a 1.5% agarose gel. A 

single major band was excised, cloned and then sequenced 

as described above. Subsequently, the other primer (IP3) 

from the newly-defined flanking sequence was designed 

for amplifying of the region containing a SSR. 

SSR Repeats Identification and Primer Design 

The SSR regions were initially identified from the 

sequences using SSR Finder 

(http://www.geboc.org/ssr/ssr.html). Motifs were 

searched included di-, tri-, tetra-, penta as well as 

compound repeats composed of di- and tri- repeats and 

imperfect repeats. In the perfect SSRs, the minimum 

number of repeat units for dinucleotides is five and four 

repeat units for trinucleotides. In the compound and 

imperfect repeats, the minimum length of di-, tri- and 

tetranucleotide repeats is five units. Imperfects repeats 

are defined as having no more than one disruptive 

element of length ≥ 1 and ≤ 20 bp (Berube et al., 2007). 

The flanking sequences of the repeat motifs were used to 

design specific primers. These SSR-specific primer pairs 

were designed according to the following criteria: 20-25 

bp with annealing temperature between 50-60°C and to 

give an expected product size of 100-400 bp, using the 

PRIMER 3.0 v.0.4.0 (Rozen and Skaletsky, 2000). 

SSR Marker Validation and Polymorphism 

To investigate the desirable properties of each 

isolated SSR loci, 20 D. moluccana seedlings were 

selected and then genotyped. Reaction in a volume of 25 

µL consists of 10-20 ng of template DNA, 0.2 mM of 

each dNTP, 5 pmol of each designed primer pair, 1× 

PCR buffer, 1.25 mM of MgCl2 and 0.5 U of Taq DNA 

polymerase (Invitrogen, USA). Amplifications were 
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conducted in Mastercycler Gradient PCR (eppendorf, 

Germany) for 5 min at 94°C, 35 cycles of 30 sec at 94°C, 

30 sec at optimal annealing temperature and 1 min at 

72°C, followed by final extension of 5 min at 72°C. The 

PCR products were electrophoresed using a 3.5% (w/v) 

metaphor agarose gel (Cambrex, USA) in 1× TBE and 

stained with Gel Star
®
 nucleic acid gel stain (Lonza, 

Rockland, ME USA). The allele sizes were determined 

by referring to 25 bp DNA ladder (Invitrogen, USA) and 

100 bp DNA ladder (Promega, USA). The transferability 

of these SSR markers was further investigated on four 

different tree species, Duabanga grandiflora, 

Neolamarckia cadamba, Canarium odontophyllum and 

Shorea parvifolia. The variability of SSR markers at 

each locus: the number of alleles (A), Polymorphism 

Information Content (PIC), expected heterozygosity (He) 

and deviations from Hardy-Weinberg Equilibrium 

(HWE) were tested using Power Marker 3.25 (Liu and 

Muse, 2005) and POPGENE 1.32 (Yeh et al., 1997). 

Results 

SSR Identification and Primer Design 

A total of 44 microsatellite repeats were identified in 

D. moluccana genome. Twenty SSR repeats (48%) were 

identified based on Lian et al. (2001) and the remaining 

microsatellite repeats (52%) were based on a modified 

protocol of Lian et al. (2006). The SSR database 

contained simple perfect and simple imperfect 

microsatellites constituted by di- and trinucleotides and, 

perfect/imperfect compounds. The most numerous class 

was the perfect compound with 24 (54.5%) occurrences, 

followed by the imperfect compounds (8 or 18.2%), 

simple perfect (8 or 18.2%) and the simple imperfect 

repeats (4 or 9.1%) as shown in Fig. 1. Out of the 44 

identified SSR repeats, specific primer pairs were 

successfully designed for 43 SSR repeats. However, 

primer pair could not be designed for (ATT)4 due to a 

high concentration of A and T nucleotides that is 

unsuitable for primers designing. 

SSR Marker Validation and Polymorphism 

Of the 43 SSR primer pairs designed, 26 (60.5%) [18 

SSR primers derived from Lian et al. (2001) and 8 derived 

from Lian et al. (2006)] amplified a product of the 

expected size. The remaining 17 (39.5%) SSR primers 

produced unexpected PCR product size or multiple 

banding patterns. These primers were then eliminated 

from further analysis. A total of 20 D. moluccana 

seedlings collected from the nursery of the Forest Tree 

Seed Bank were genotyped to determine the 

polymorphism level of each newly developed SSR primer 

pairs. Of the 26 SSR primers analysed, 7 (28%) were 

derived from simple perfect repeats, 4 (16%) from simple 

imperfect, 10 (40%) from compound perfect and 4 (16%) 

from compound imperfect. All these SSR primers were 

able to produce the expected products with one or two 

bands in all or some of the D. moluccana individuals (Fig. 

2). This is consistent with the D. moluccana as a diploid 

species (2n = 48). Besides that, the co-dominant nature of 

SSR markers are enabled to distinguish homozygous 

individuals (one band or two copies of the same allele) 

from heterozygous individuals (two bands or two 

different alleles) in diploid species as shown in Fig. 2.  

 

 
 

Fig. 1. Frequency of different types of SSR repeat motifs identified in D. moluccana genome 
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Fig. 2. Polymorphism of a SSR marker, DMTCAC11 in D. moluccana. Electrophoresis of amplified products on 3.5% metaphor 

agarose gel. M1: 100 bp DNA ladder (Promega, USA). M2: 25 bp DNA ladder (Invitrogen, USA) 
 
Table 1. Characteristics of the 25 SSR markers developed for D. moluccana 

        Deviation 

    Ta Product size   from 

Locus Repeat motif Primer sequence (5’-3’) A (°C) range (bp)  PIC He HWE Method 

DMAC01* (GA)3CACC(GA)7 F: GTACAGCACGCACATGACAC 5 55 193-210 0.668 0.715   0.019 Lian et al.  

  R: GTAGGCCGCTATGAAACCAG       (2001) 

DMAC02* (GT)5GC(GT)2 F: TCAGTCTCAGCAAGTGTGTGC   4 52 152-165 0.473 0.544 0.001  Lian et al.  

  R: ATCTTCAGCCTCTCCTTCG       (2001) 

DMAC03* (CA)3(AG)4 F: AAGGGATGTGTTTCGGAGTG 2 55 200-225 0.225 0.255 0.000  Lian et al.  

  R: TGGCTAGGCCTTTCGTTAAG       (2001) 

DMAC04* (AT)3(GT)8 F: CACGTGTCAACACTTTCAGCTA 4 53 180-210 0.562 0.606 0.000  Lian et al.  

  R: GTGGTTACTTTTGTTAGTCCAATCC       (2001) 

DMAC05* (GT)5 F: TCTCCTTAAATCTCGTCTTGTGC 4 52 150-175 0.592 0.586 0.000  Lian et al.  

  R: GATGGCATGCAACAACCTC       (2001) 

DMAC06* (TAG)3(TAA)3 F: GGCTGAGGTCATGTCAGAGTC 6 52 230-250 0.650 0.654 0.000  Lian et al.  

  R: AAATTGGCACACGCATTTAG        (2001) 

DMAC07* (AC)7(GT)3 F: GATTGGCAACTCCATCCAAG 3 60 175-220 0.528 0.430 0.000  Lian et al.  

  R: CACTCATGTCACCGAAATGG        (2001) 

DMAC08 (TG)2ACAAA(TG)5 F: AATGCGTGTGCCAATTTTAC 3 52 130-175 0.488 0.574 0.253 Lian et al.  

  R: GCGACACTGATACCTAAGTCTGTT       (2001) 

DMAG02* (CT)8 F: AGCAGGGAGCTTACATTTC 5 60 175-240 0.690 0.685 0.000 Lian et al. 

  R: ACAGTGTCCACAACCTCTCG        (2001) 

DMAG09* (AG)10 F: GGATTCTGTTCACGATTTTCG 6 59 200-275 0.739 0.752 0.000 Lian et al. 

  R:TCACCGCCAACCTCTCTAAG       (2001) 

DMAG04* (GAT)3GTT(GAT)3 F: AGAAGCTGGCAGAAAAATGC 7 54 150-250 0.785 0.811 0.092 Lian et al. 

  R: GCGAGAGAAAGCAAAAGGTC        (2001) 

DMAG05 (CT)19 F: TGTGTGCTCATTGCTTTCTTG 8 52 237-350 0.739 0.766 0.000 Lian et al. 

  R: GGCTCTCTCTTCGTCTATTTTGG       (2001) 

DMAG06* (CT)4TTTT(CT)3 F: TCATCACGAGACGACTGACC 4 55 225-275 0.675 0.725 0.000 Lian et al. 

 G(TTTTC)2 R: GGGGTACAATCTAAATTGATCGAG       (2001) 

DMAG07* (TCC)3CC(ATT)2 F: CTGCTGCCGCTACAGAACTC 2 53 200-300 0.365 0.480 0.000 Lian et al. 

  R: GAGAGAGGAGCGAAGGGAAG        (2001) 

DMAG08* (GACA)2C(AG)4 F: CCATTATCTGCTTCCCTTCG 5 53 148-200 0.534 0.579 0.000 Lian et al.  

  R: ATATCATCCCGCCGCTTC       (2001) 

DMAG10 (CT)8 F: TTCCTCTCCTCGGTTTCTTG 7 51 180-250 0.745 0.758 0.306 Lian et al. 

  R: TGCGTCTCTTCTTCCTTGAAC        (2001) 

DMGTG02* (CCA)2A(CAC)3 F: ACTCCCTCCTCTCCATCTCC 3 60 130-190 0.460 0.515 0.000 Lian et al.  

  R: GGACAAGCGACTCCACTGAC        (2001) 

DMACAG01 (AC)6(AG)9 F: (AC)6(AG)5 7 55 230-300 0.792 0.801 0.064 Lian et al. 

  R:TGAGCTCATTGTAGTAGAGAACAAG       (2006) 

DMACAG07* (AC)6(AG)5 F: (AC)6(AG)5 4 56 295-330 0.554 0.568 0.000 Lian et al. 

  R: CGAATGAGGCCGAAACTTAG        (2006) 

DMTCAC04 (ATA)7 F: GGGGTACGGTTGAGTACAGC 5 54 200-280 0.650 0.611 0.807 Lian et al. 

  R: AGTGAAGCGCAGGGTATTTG       (2006) 

DMTCAC05* (GT)5(GA)6 F: AAATACCCTGCGCTTCACTC 3 56 225-275 0.539 0.614 0.000 Lian et al. 

  R: (TC)6(AC)5       (2006) 

DMTCAC07* (GT)5(GA)6 F: ATTGCCTCAGGTATGCAATC 4 59 200-250 0.608 0.636 0.019 Lian et al. 

  R: (TC)6(AC)5       (2006) 

DMTCAC08* (CT)6(CA)6 F: (TC)6(AC)5 5 56 225-375 0.678 0.649 0.008 Lian et al. 

  R: AGCTGCCTAGCACCTCTGTC        (2006) 

DMTCAC11* (GA)19 F: CTGGCTATAACAGGGCCAAA 5 59 200-275 0.729 0.767 0.001 Lian et al. 

  R: CACACACACACTATACTCCACCTC        (2006) 

DMTCAC13* (TC)6(AC)6(AT)3 F: (TC)6(AC)5 4 52 205-270 0.628 0.660 0.000 Lian et al. 

  R: GCAAGCTTGAGGATTTCGAG       (2006) 

Mean    4.60   0.604 0.630 

A = Number of alleles; Ta = Annealing temperature; PIC = polymorphism information content; He = Expected heterozygosity (Nei’s, 1973); *significance 

departure from HWE (p<0.05) 
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Table 2. Cross-species amplification of D. moluccana SSR markers 

SSR Primer GD1 GD2 NC1 NC2 CO1 CO2 SP1 SP2 

DMAC01 + + MP - MP MP MP MP 
DMAC02 + + - - - - - - 
DMAC03 + + + + + + + + 
DMAC04 + + + - + + + + 
DMAC05 + + - - - - - - 
DMAC06 + + + - - - - - 
DMAC07 - - - - - - - - 
DMAC08 + + - - - - + + 
DMAG02 - - - - - - - - 
DMAG04 + + - - - - MP - 
DMAG05 + + + - + + + - 
DMAG06 + + - - - - - - 
DMAG07 + + + + - - MP - 
DMAG08 + + + - + MP + + 

DMAG09 + + + - + + + + 
DMAG10 + + - - - - - - 

DMGTG02 + + - - - - MP MP 

DMACAG01 + + MP - MP MP MP - 

DMACAG07 - - MP - MP MP MP MP 

DMTCAC04 - + - - - - - - 

DMTCAC05 + + MP - MP MP MP MP 
DMTCAC07 - - MP - - - MP - 

DMTCAC08 + + + - + + + + 
DMTCAC11 + + - - - - - - 
DMTCAC13 - + MP + MP MP - - 

Duabanga grandiflora (DG), Neolamarckia cadamba (NC), Canarium odontophyllum (CO) and Shorea parvifolia (SP). 

“+” indicates expected amplifiable products; “MP” indicates multiple PCR products without expected sizes and “-” indicates 

unexpected PCR product sizes or without PCR products. 
 
From the 26 primers tested, only 13 were able to amplify 
all the D. moluccana samples. Meanwhile, null alleles 
were detected at the remaining 13 SSR primers; with 
DMAG03 primer pair carried the highest number of null 
alleles (15 null alleles). Therefore, this DMAG03 primer 
pair was excluded from further characterization. 

A total of 115 alleles were detected across the 25 loci. 

The number of alleles detected per locus ranged from two 

(DMAC03 and DMAG08) to eight (DMAG06) with a 

mean value of 4.6 (Table 1). This mean value was higher 

than other studies of Brassica rapa (1.9 alleles per locus) 

(Tamura et al., 2005), Citrus sinensis (2 alleles per locus) 

(Novelli et al., 2006) and Arachis hypogaea (2.44 alleles 

per locus) (Cuc et al., 2008). The PIC values ranged from 

0.225 (DMAC03) to 0.792 (DMACAG01). Twenty-three 

out of 25 SSR loci were considered highly informative 

with PIC more than 0.5, while two primers (DMAC03 and 

DMAG08) were categorized in reasonably informative 

loci (0.25 < PIC < 0.5) (Botstein et al., 1980). In general, 

PIC value is positively correlated with the number of 

alleles and the frequency of the alleles (Buchanan and 

Thue, 1998). This is consistent with the present study as 

most of the SSR loci with a large number of alleles 

displayed higher PIC (Table 1). 

Cross Species Amplification of SSR Markers 

The transferability of D. moluccana SSR markers 

was further investigated on four different tree species, 

Duabanga grandiflora, Neolamarckia cadamba, 

Canarium odontophyllum and Shorea parvifolia. The 

success of SSR markers amplifications was evaluated by 

the positive amplification of a PCR band of the expected 

size. Results for cross-species amplification are 

summarized in Table 2. The success rate was varied 

among species, ranging from 84% in Duabanga 

grandiflora, 36% in Neolamarckia cadamba, 24% in 

Canarium odontophyllum and 28% in Shorea parvifolia. Of 

the 25 SSR primer pairs tested, six (24%) primers 

(DMAC03, DMAC04, DMAG05, DMAG08, DMAG09 

and DMTCAC08) amplified at least one individual in all 

species analysed. Among these transferable D. moluccana 

SSR primers, two were simple perfect, three were 

compound perfect and one was compound imperfect 

repeats. As reported by Ekue et al. (2009), SSR markers 

based on perfect repeats were likely to be more 

conserved than those harbouring imperfect repeats. On 

the other hand, four loci (DMAC07, DMAG02, 

DMACAG07 and DMTCAC07) failed to amplify 

expected PCR products in all species tested. 

Discussion 

Two methods were used for SSR markers 

development in D. moluccana, namely Lian et al. (2001) 

and a modified protocol of Lian et al. (2006). Based on 

Lian et al. (2001), it involves four major steps: (a) 
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amplifying SSRs using a SSR-primer [(AC)10, (AG)10, 

(CT)10 and (GTG)6] to produce fragments flanked by 

SSR sequences; (b) designing a primer based on the 

region between the two SSR sequences; (c) sequencing 

the region from the primer to the side flanking the SSRs 

by a walking method and (d) designing another primer 

from the newly defined flanking sequence for 

amplification of the region containing a SSR. The 

second method was based on Lian et al. (2006) with 

slightly modifications for isolating compound SSR 

markers. First, the fragments flanked by compound SSR 

sequence at both end were amplified from DNA using 

compound SSR primers, i.e., (AC)6(AG)5 and (TC)6(AC)5. 

These amplified sequences were cloned and sequenced. A 

locus-specific primer was designed from the sequence 

flanking the compound SSR. This is relatively simple 

method compared to Lian et al. (2001) because 

without adaptor-ligated DNA libraries construction. 

Then, a common compound SSR primer and locus-

specific primer were used as a SSR marker to amplify 

each compound SSR region. The frequency 

distribution of repeat motif was varied in D. 

moluccana. The dinucleotide repeats were the most 

abundant in D. moluccana. This finding was 

consistent with the other studies such as in Trifolium 

repens (93%) (Kolliker et al., 2001), P. trichocarpa 

(72.4%) (Tuskan et al., 2004) and Hevea brasiliensis 

(96.1%) (Yu et al., 2010) that dinucleotide repeats 

were the most abundant in plant systems. Toth et al. 

(2000) also reported that dinucleotides are about 1.5-fold 

more common than other repeat motifs (tri-, tetra- and 

pentanucleotides) in genomic DNA. 

In simple perfect dinucleotides, AG/GA/CT/TC 

(83.3%) was observed more frequently than 

AC/CA/TG/GT (16.7%). Among AG/GA/CT/TC repeat 

motif, two SSRs had more than 10 repeats and three 

contained 8 and 10 repeats. AG/GA/CT/TC was found to 

be the longest simple repeat motif with 19 repeat units 

(38 bp). The greater number of AG/GA/CT/TC repeats 

relative to AC/CA/TG/GT repeats in D. moluccana 

genome is consistent with findings from other tree 

species, such as Shorea curtisii (Ujino et al., 1998), 

Eucalyptus spp. (Brondani et al., 1998), Populus 

tremuloides (Dayanandan et al., 1998), Caryocar 

brasiliense (Collevatti et al., 1999), Hevea brasiliensis 

(Roy et al., 2004) and Pinus resinosa (Boys et al., 2005). 

Pfeiffer et al. (1997) also reported that there is one (AG)n 

microsatellite per 194 kb and one (AC)n per 406 kb in 

the Picea abies nuclear genome. In contrast, higher 

frequency of AC/TG repeats was reported in other 

species such as tobacco (Lagercrantz et al., 1993), Pinus 

strobus (Echt and May-Marquardt, 1997), H. brasiliensis 

(Yu et al., 2010) and Acacia sp. (Butcher et al., 2000). 

Two perfect trinucleotide repeat motifs were detected 

meanwhile another two trinucleotide were in perfect and 

imperfect compounds, respectively. The longest repeat 

array found in prefect trinucleotide was ATA, repeated 

for seven times. Simple perfect dinucleotide repeats 

(75%) was frequently observed compared to 

trinucleotide repeats (25%). In agreement with earlier 

studies, dinucleotides are frequently found in non-

coding regions, while trinucleotides are expected to be 

most abundant SSR class found in coding regions 

(Berube et al., 2007). Lagercrantz et al. (1993) also 

stated that trinucleotide SSRs are relatively infrequent in 

plants compared with vertebrates and other organisms. 

Compound repeat motifs were also detected. Out of 32 

compound repeats identified, 24 were perfect repeats 

(75%) and 8 were imperfect repeats (25%). Most of the 

compound perfect repeats were characterized by the 

presence of two to three dinucleotide repeat motifs with 

varying repeat length. A relatively long stretch of 

compound perfect repeat containing AC/TG and AG/TC 

motifs with a repeat length of three and nine, 

respectively. Among the compound imperfect repeats, 

GT seemed to occur at a higher frequency, which 

interrupted by one to six non-repeat nucleotides. 

Besides the GT motifs, different motifs comprising di-

, tri-, tetra- and penta-nucleotide also existed as part 

of compound imperfect repeats. 

The differences in the abundance of SSR motifs 

among plant genera are not well understood. Moreover, 

the number and repeat type of SSR are influenced by the 

restriction enzyme used to size fractionate the genome 

during DNA libraries construction (Hamilton and 

Fleischer, 1999). Therefore, although various 

frequencies of SSR repeat motifs were detected, these 

frequencies do not represent the actual distributions of 

SSRs throughout the D. moluccana genome. This is 

because as only five ISSR primers were used in 

amplifying fragments flanked by SSRs. In this study, it 

was also found that more than one SSR repeats in a 

single clone. This indicates that the SSRs are organized 

in clusters. According to Oliveira et al. (2006), DNA 

repair system also plays an important role in determining 

the SSR distribution in different species. 

Multiple bands were produced due to multiple primer 

binding sites along the genome. This phenomenon is 

quite common since SSR sequences may be associated 

with the repetitive genomic DNA (Smith and Devey, 

1994). Moreover, multiple products seem to be 

associated with compound SSRs developed based on a 

modified protocol of Lian et al. (2006). This is because 

12 out of the 16 primers were from this category. One of 

the reasons that lead to multiple products might due to 

the use of universal primers [(AC)6(AG)5 or (TC)6(AC)5] 

as one of the primers in the compound SSR marker 

developments. Thus, this subsequently will increase the 

possibility of amplifying the undesired products. 
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Null alleles are commonly detected in SSR analysis. 

It refers to any individuals repeatedly fail to amplify any 

allele at just one SSR primer while all other primers 

amplify normally. These null alleles are usually 

attributed to a mutation within primer-binding sites 

flanking the microsatellite or amplification conditions 

problems (Yu et al., 1999). As consequence, this may 

completely inhibit primer binding and leading to the loss 

of products or giving a faint band (Gupta and Varshney, 

2000) and therefore, some of the heterozygotes might be 

incorrectly genotyped as homozygotes (Selkoe and 

Toonen, 2006). In this study, re-amplifications on such 

samples were carried out to exclude the possibility of failure 

during PCR amplification. According to Rallo et al. 

(2000), the detection of null alleles in SSR loci is quite 

common especially in highly outbreeds heterozygous 

species. Moreover, the presence of null alleles has been 

reported in a wide range of taxa, including humans 

(Callen et al., 1993), fish (Jones et al., 1998), insects 

(Liewlaksaneeyanawin et al., 2002; Li et al., 2009) and 

plants (Sefc et al., 1999; Sousa et al., 2005; Pastorelli et al., 

2003; Yazdani et al., 2003). 
PCR amplification of SSR loci typically produce 

stutter or shadow bands. These bands are usually differs 

in size from the actual SSR allele by multiple of the 

repeat unit length. In this study, stutter bands were 

detected in DMAG04, DMAG05 and DMAG10. Example 

of stutter bands produced by DMAG05 primer is shown in 

Fig. 3. The stutter bands were mainly occurred in the 

perfect dinucleotides (DMAG05 and DMAG10) and 

simple imperfect trinucleotide repeats (DMAG04). A 

similar result was also reported by Valk et al. (2005) as 

dinucleotides are usually display higher stutter than tri- 

and tetranucleotide repeats. For example, three bands per 

individual were detected at DMAG05 locus (L1, Fig. 3). 

To study the stutter bands, sequence analysis of these 

three bands was carried out. The results showed that the 

stutter band (DMAG05-allele 2) lacks two CT repeat 

units at position 125-128 bp (4 bp) relative to the actual 

SSR band (DMAG05-allele 3) (Fig. 4). Besides that, a 

substitution of T (DMAG05-allele 3) to C (DMAG05-

allele 2) was also observed at SSR region (at position 

100 bp). In agreement with Walsh et al. (1996), the 

longer alleles (DMAG05-allele3) in heterozygous 

individuals exhibit a greater degree of stutter band 

formation than the shorter alleles (DMAG05-allele 1) at 

the same locus. Walsh et al. (1996) also reported that 

stutter bands are primarily caused by the slippage of Taq 

DNA polymerase during amplification. As explained by 

Shinde et al. (2003), Taq DNA polymerase slippage rate 

increases with the number of repeat units and inversely 

correlated with repeat unit length.  

Another well-known reason is the addition of an 

extra A residue to the 3’-end of the amplification product 

by the Taq DNA polymerase used in PCR. The 

formation of stutter band is also affected by other factors 

such as length of the repeat flanking sequence, 

denaturation temperature and number of PCR cycles 

(Olejniczak and Krzyzosiak, 2006). Stutter bands are 

usually complicated with the interpretation of DNA 

profiles due to difficulties in allele determination and 

heterozygotes may be confused with homozygotes 

(Weising et al., 2005). According to Butler (2005), 

stuttering can be reduced by using SSR primers with 

longer repeat units, SSR alleles with imperfect repeat 

units and DNA polymerases with faster processivity. 
To verify the newly developed SSR markers 

amplified the targeted SSR repeats, the selected PCR 
products were cloned and sequenced. For instance, the 
DMAG05 primer pair amplified the desired SSR region 
in D. moluccana genome and the SSR flanking region 
was highly conserved (Fig. 5). It was also observed that 
SSR alleles exhibited complex patterns of mutation 
including changes in the number of SSR repeat units, 
base substitution and insertions/deletions (indels) 
within and outside the microsatellite motif. A 
substitution of mononucleotide T to C and G to C were 
observed at positions 84 bp and 128 bp, respectively. A 
substitution at position 84 bp was interrupted the (CT)19 
long perfect repeat motif into (CT)2CC(CT)12 imperfect 
repeat motif. Such interrupted motifs tend to reduce the 
slippage rate (Ellegren, 2004) and leads to the birth of 
new SSRs (Sethy et al., 2006). 

As explained by Kruglyak et al. (1998), such 
mechanism is important in the life cycle of SSRs which 

is essentially a balance between expansion by slippage 
and degradation by point mutations. Harr et al. (2000) 
also stated that the interruptions in a repeat track may be 
only a transitional state and could be removed by DNA 
replication slippage or reverse mutations. Addition of 
CT repeat units in repetitive tracts of DMA05-allele 1 

(Fig. 5) was caused by polymerase slippage during 
DNA replication or slipped strand mispairing. Besides, 
it was also found that another 3 bp additions (at 
position ranged from 117 to 119 bp) flanking the SSR 
region (DMA05-allele 1) (Fig. 5). Such addition is a 
major contributor to a length polymorphism and 

subsequently increased the product size from 164 bp 
(DMA05-allele 2) to 174 bp (DMAG05-allele 1). 

The mutation patterns of SSRs are far more complex 
which may not only be based on repeat number but also 
the region flanking the SSRs (Rallo et al., 2000). Indel 
of a single base or even long DNA fragments in the 
flanking regions has been reported as a source of 
variation in SSRs (Lia et al., 2007). According to 
Folkertsma et al. (2005), the indels in the flanking 
regions are more frequent and thus responsible for most 
of the variation in allele size rather than changes in 
SSR repeat. This phenomenon is also observed in 
maize (Matsuoka et al., 2002) and almond (Xie et al., 
2006) that the allelic divergence at SSR loci is caused 
by the indels in their flanking sequences. 
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Fig. 3. Polymorphism of a SSR marker, DMAG05 in D. moluccana. Electrophoresis of amplified products on 3.5% metaphor 

agarose gel. M: 25 bp DNA ladder (Invitrogen, USA) 
 

 
 
Fig. 4. Sequence alignments of three SSR alleles in D. moluccana amplified by DMAG05. Asterisks (*) indicate nucleotide 

conservation. The repeat regions are marked in bold and point mutation is highlighted in grey. Gaps (-) indicate the absence 

of nucleotides in given alleles 
 

 
 
Fig. 5. Sequence alignment of SSR alleles from two different individuals of D. moluccana. Asterisks (*) indicate nucleotide 

conservation. The repeat regions are marked in bold and point mutations are highlighted in grey. Gaps (-) indicate the absence 

of nucleotides in given alleles 

 
Such allele size variation was considered deviations 
from the expectations of Stepwise Mutation Model 
(SSM) (Lia et al., 2007). As explained by Ellegren 
(2004) many theoretical models fail to accurately 
describe allele frequency distributions in natural 
populations. Bhargava and Fuentes (2010) also stated 
that SMM and Two Phase Model (TPM) may only 
provide adequate measures in populations that are 
closely related than unrelated taxa. 

The level of polymorphism of an SSR usually 
increases with repeat number (Ellegren, 2004). Xu et al. 
(2008) demonstrated that SSR markers with length more 
than 30 bp were significantly more polymorphic than 
other markers with length less than or equal to 30 bp. In 
this study, a 15 repeats DMACAG01 marker 
[(AC)6(AG)9] was found to be more polymorphic (PIC = 
0.792) than the longest repeat microsatellites, DMAG05 
(19 repeats) [(CT)19] (PIC = 0.785) and DMTCAC11 
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[(GA)19] (19 repeats) (PIC = 0.729). Therefore, our 
results showed that the number of repeat units is not 
always associated with the degree of polymorphisms. 
Similar results were also observed in other studies, e.g., 
Dayanandan et al. (1998) in Populus tremuloides, 
Brondani et al. (1998) in Eucalyptus spp., Yu et al. 
(1999) in Phaseolus vulgaris, Chiba et al. (2003) in 
Cucumis melo, Rallo et al. (2000) in Olea europaea and 
Ma et al. (2009) in genus Fagopyrum. 

Mutation rates vary considerably among different 

repeat motifs. In this study, dinucleotide loci showed a 

higher polymorphism level than trinucleotide loci in 

term of number of alleles as well as PIC values. For 

example, the number of alleles and PIC value of 

DMACAG01 with compound perfect dinucleotide 

repeats (AC)6(AG)9 (7 alleles) (PIC = 0.792) were higher 

compared to DMTCAC04 with simple perfect 

trinucleotide repeats (ATA)7 (5 alleles) (PIC = 0.650). 

Schug et al. (1998) had estimated that dinucleotide 

repeats mutate at rates 6.4 and 8.4 times higher than tri- 

and tetranucleotide repeats, respectively in Drosophila 

melanogaster. Meanwhile, the average PIC value among 

dinucleotide repeats (0.48) was reported to be higher than 

trinucleotide repeats (0.33) in Pigeonpea (Odeny et al., 

2007). Similar differences in levels of polymorphisms 

between these two classes were also reported in 

Melaleuca alternifolia (Rossetto et al., 1999), P. abies 

(Scotti et al., 2002), Lycopersicon esculentum (He et al., 

2003) and Persea Americana (Ashworth et al., 2004). 

Li et al. (2004) also stated that dinucleotide motifs are 

usually associated with more repeat numbers and making 

them the best source of highly polymorphic SSR markers. 

Deviation from Hardy-Weinberg Equilibrium (HWE) 

was analyzed using Chi-square test (p<0.05). In this 

study, 20 loci deviated significantly from HWE (p<0.05) 

(Table 1). This might be due to the excess of 

homozygotes and the presence of null alleles (Selkoe and 

Toonen, 2006). They further explained that 

homozygotes excess (also known as heterozygote 

deficit) can be due to biological realities of violating 

the criteria of an ideal population, such as strong 

inbreeding, selection or against for a certain allele. In 

addition, the D. moluccana seedlings used for SSR 

polymorphism analysis were collected from the nursery 

of Forest Tree Seed Bank, Sarawak Forestry 

Corporation. These seedlings are originated from the 

same source from the Batu Niah, Sarawak and thus, this 

might cause the increase in the number of homozygotes 

or genetic similarity among the seedlings. 

Cross-species amplification of SSRs loci is 

considered as a cost-effective approach in developing 

locus specific markers for new species (Yasodha et al., 

2005). According to Kutil and Williams (2001), a high 

sequence similarity among primer binding sites and 

repeat motifs is treated as orthology for trans-species 

SSRs. In plants, successful transferability of SSR 

markers between species has been demonstrated in 

numerous taxa, including Vitis (Arnold et al., 2002), 

Pinus spp. (Gonzalez-Martinez et al., 2004), Ficus spp. 

(Nazareno et al., 2009) and Salix/Populus spp. 

(Hoshikawa et al., 2009).  

The relatively high transferability of D. moluccana 

SSR markers was observed in D. grandiflora, as 21 out 

of 25 markers resulted into amplicons of expected size. 

This indicates that a very high level of sequence 

conservation exists in DNA sequence flanking SSRs 

between D. moluccana and D. grandiflora. On the other 

hand, a relatively large evolutionary distance may 

explain the low success rate of transferability of D. 

moluccana (Sonneratiaceae) SSR markers to an 

unrelated taxa belonging to the N. cadamba (Rubiaceae), 

C. odontophyllum (Burseraceae) and S. parvifolia 

(Dipterocarpaceae). As explained by Rao et al. (2007), 

there is significant inverse relationship between SSRs 

performance and evolutionary distance of the species. 

Rossetto (2001) also stated that the cross-species 

amplification of SSR loci was 76.4% at genus level and 

35.2% at the family level. Moreover, other factors such 

as transposition, chromosomal rearrangements and 

insertions/deletions also could affect the transferability 

of the SSR markers across species. In the present study, 

the level of polymorphism of each transferable SSR 

marker was not determined since only two samples per 

species were tested. Overall, the results demonstrated 

that the D. moluccana SSR markers were transferable on 

other tree species and would become useful tools for 

population genetic studies. 

Conclusion 

This study has demonstrated that ISSR-suppression 

PCR methods are suitable for developing SSR markers 

for species with little genomic information. It is a 

relatively simple and rapid without enrichment and 

screening and the time for procedures has also been 

shortened. The development of an array of SSR markers 

in this study would be very useful for genetic diversity 

study among natural populations of D. moluccana. In 

fact, this is the first available information of genomic 

SSR markers in D. moluccana. Knowledge of the levels 

and patterns of genetic diversity is valuable for tree 

breeders to accurately identify genetically diverse 

populations, selection of plus trees, provenance trials and 

establishment of Seed Production Areas (SPAs) of D. 

moluccana in the selected natural stands for tree 

improvement and conservation activities. 
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