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Abstract: Nonlinear conjugate gradient methods for unconstrained 

optimization problems are used in many aspects of theoretical and applied 

sciences. They are iterative methods, so at any iteration a step length is 

computed using a method called line search. In most cases, the sufficient 

descent condition plays an important role to prove the global convergence 

of a conjugate gradient method. Due to its outperformance in practical 

computation, the Polak-Ribière-Polyak (PRP) conjugate gradient method is 

widely used for solving nonlinear unconstrained optimization problems. 

However, the sufficient descent condition of PRP has not established 

without line search yet. In this study, we established the sufficient descent 

condition without line search based on the conditions 0 < k
PRP   k

FR and 

1 < k
PRPk

FR, where 0 <  < 1 and  > 1. As a result, we found that under 

certain conditions, the sufficient descent condition is satisfied when the PRP 

implemented without line search. 

  

Keywords: Conjugate Gradient Method, Unconstrained Optimization, 

Sufficient Descent Condition. 

 

Introduction 

The optimization formula that we utilized is as 

follows: 

 

min ( ),nx R
f x


 (1.1) 

 

where  f:Rn→R is a nonlinear, continuously differentiable 

function, and its gradient is denoted by g(x), which should 

be available, when applied to solve the problem (1.1), 

starting from an initial point x1  Rn and follows the 

iteration formula:  
 

  𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑑𝑘,     𝑘 = 0, 1, 2, …,                  (1.2) 
 

where  k > 0 is a step-size. The step-size is determined by 

some line search and  dk is the search direction defined by: 
 

 
0,

1 1,

k

k

k k k

g if k
d

g d if k

− =
=

− + − 
  (1.3) 

 

where, gk = f (xk) is the gradient of  f (xk) and k is a scalar. 

The famous classical CG methods formulas for k are: 
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( )
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k k
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− −
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( )
1 1

1
,

LS

T

k k

k T

k k

g g gk

d g


− −

− −
=  (1.8)  

 

( )1 1

.
DY

T

k k
k T

k k k

g g

g g d


− −

=
−

 (1.9)  

 

The other types of the conjugate gradient methods can 

be obtained based on the corresponding different choices 
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for important scalars k. Therefore, to get an efficiency in 

practical computation and robust convergence, the scalar 

must satisfy the global convergence and obtained choicely 

performance in computation. Historically, the linear 

Conjugate Gradient (CG) method had been suggested by 

Hestenes and Stiefel (1952); for solving symmetric 

positive definite linear systems of equations in 

Hestenes and Stiefel (1952) and nonlinear conjugate 

gradient scalar is proposed for solving linear systems of 

equations, independent, that is: 
 

( )
( )

1

1

1

.

k

T

k k kHS

k

k k d

g g g

g g T


−

−

−

−
=

−
 (1.10) 

 

 Polak and Ribière (1969; Polyak, 1969), proposed 

nonlinear conjugate gradient scalar for solving 

unconstrained independent optimization problems, that is 

given as the following: 

 

( )1

2

1

.

T

k k kPRP

k

k

g g g

g


−

−

−
=  (1.11) 

 

The PRP and HS methods have excellent performance 

in practical computation, due to their possession of an 

approximate restart feature when jamming occurs. 

Nevertheless, their convergence properties don’t seem to 

be perfect(Jiang and Jian, 2019). The global convergence 

of the PRP method with exact line search has been 

established by (Polak and Ribière, 1969) under a powerful 

convexity assumption for f. The numerical performance 

of the FR method (Fletcher and Reeves,1964); conjugate 

gradient method has often been much slower than that of 

the PRP conjugate gradient method (Awad Abdelrahman, 

2020). (Gilbert and Nocedal, 1992), proceeded 

classificatory analysis and an exhibited that the PRP method 

is globally convergent if PRP is constrained to be non-

negative and k is determined by a line search step satisfying 

the sufficient descent condition
2

T

K k kg d c g − . According 

to, the standard Wolfe conditions (Li and Li, 2011), proposed 

two derivative-free approaches stood on modified PRP 

conjugate gradient techniques for solving large-scale 

nonlinear equations. Moreover, the numerical efficiency of 

the PRP method is principally associated with an automatic 

restart feature that avoids jamming (Powell, 1977). 

In this study, in order to obtain sufficient descent 

condition without line search, we do a little analysis on 

the method of PRP (1.11).  

Analysis Attributes of PRP Method 

Before narrating the attributes of PRP scalar, we 

introduce the following assumption, which is a very 

important to study the functions behavior.  

Assumption A  

f(x) is bounded below on the level set on 
nR and is 

continuously and differentiable in a neighborhood N of 

the level set = {x  Rn f (x)  f (x0)} at the initial point 
x0, there exists a constant B > 0 such that 

 

, , .X y B x y N−     (2.1) 

 

The gradient g(x) =f (x) is Lipschitz continuous in N

, so a constant L > 0 exists, such that; 

 

 ( ) ( ) ,  g x g y L x y for any x,yεN−  −   (2.2) 

 

 By using the Assumption of f, there exists a constant 

  0 such that: 

 

 ( ) .g x x     (2.3) 

 

The following is significant attributes of PRP (1.11) 

method, which have been utilized in establishing the 

sufficient descent condition in the intervals (0,1) and (1,). 
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K k k k k
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− −

−
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 

 (2.4) 

 

From (2.4), if 
1 0T

K kg g −   , then: 

 

1 11
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1
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From above inequality and (2.4), we have: 
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1
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k k k
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g

  

   

− −

−

−

 
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  = +

 (2.5) 

 

From (2.5), PRP is positive and belong to the interval 

(1,) and also. 
2

1 0T

K kg g −−   , where (0, 1) and from (2.3): 

 

 

2
2

2

11

0 .
k k
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k kk

g g
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−

 (2.6) 
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From (2.4) and if
1 0T

k kg g −   , then: 
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k k kk k

kk k

T
k k kk k

kk k

g g gg g
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g g gg g
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

− −−

− −−

  =

   =

 
 

where,  is small real number,  (0,1): 
 

11

2
1 1 1 ,

T
kk k

kk

gg g

gg


−−−  −  −

 
 

Multiply the above inequality byk
FR, we obtain: 

 

1 1

2

1

1 1 (1 ),

(1 )

T
kFR FR FRk k

k k k

k k

kFR FR PRP FR FR

k k k k k

k

g g g

g g

g

g

   
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− −

−

  
  −  −  −
  

   

−  −   − 

 (2.7) 

 

, 00 1.FR PRP FR

k k k where           (2.8) 

 

Observe that in case of 
1 0,T

k kg g −  the k
PRP is in the 

interval (0,1) and the PRP method may not satisfying the 

sufficient descent condition in this interval (Gilbert and 

Nocedal, 1992); So we try to overcome that defect by 

obtaining the sufficient descent condition without line 

search in this interval. Furthermore, from (2.7), we obtain 

the following results: 

 
2 2 2 2

1

2 2 2 2

11 1 1 1

(1 ),

T

k k k k k k k

kk k k k

g g g g g g g

gg g g g


−

−− − − −

−
−  −   −

 
 

Multiply the above inequality by 
2

1kg −  we obtain: 

 
2 2 2 2

1 1 (1 ),T

k k k k k k k kg g g g g g g g − −−  −  −  −
 

 

Subtractions the above inequality by 
2

kg , we obtain: 

 
2 2

1 12 ,T

k k k k k kg g g g g g− −−  −  − −
 

 

From above inequality, we get: 

 

1 2 .k k kg g g −    (2.9) 

and: 

 

 
2

10 2 .T

k k kg g g−   (2.10) 

 

Sufficient Descent Condition  

The following theorems present the proof of the 

sufficient descent condition for the PRP method without 

using the line search. 

Theorem 3.1. Let 1 0T

k kg g − 
 , where k = k

PRP  k
FR 

if  >1 given in (2.5). For any X1  Rn consider the 

sequence {xk}, which is generated by (1.2) and (1.3), then 

the following inequality holds: 

 

 
2
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k k kg d c g k −     (3.1) 

 

where: 
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2 .c


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−
 

 

Proof. We prove this Theorem by induction. We begin 

proving the descent condition 0T

K kg d   as follows. For k 

=0, is true 
2

0 0 0 0,Tg d g= −   supposing that 0T

i ig d   

holds for 1i k − we deduce that the sufficient descent 

condition holds by proving that 0T

i ig d   holds for i = k 

as follow. Consider i = k, we have the following properties 

without line search: 

 

1.k k k kd g d −= − +  (3.2) 

 

We multiply (3.2) by gk-1, to obtain: 
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 (3.3) 

 

Also we multiply (3.2) by kg
, we get: 
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From (3.3) and (3.4), we have: 

 

1 1 1 1
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T
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We substitute (3.5) in (3.4) and from (2.5), we get: 
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From (3.6) and (2.6), we obtain: 
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Repeating this process and using the fact that
2

1 1

T

kg d g= − , which implies that: 

 

2
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g
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Therefore, we can deduce that (3.1) holds for 1k  .  

Theorem 3.2. Let 1 0T

k kg g − 
where, k = k

PRP   K
FR, 

such that 0 < < 1 is given as (2.8). For any x1  Rn, 

consider the sequence {xk} generated by (1.2) and (1.3), 

then the following inequality holds: 
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k k kg d c g k −    (3.7) 
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Proof. We prove this Theorem by induction. We begin 

to prove the descent condition 0T

k kg d   as follows. For k 

= 0, is true 
2

0 0 0 0,Tg d g= −   supposing that 0T

i ig d   

holds for  k -1,we deduce that the sufficient descent 

condition holds by proving that 0T

i ig d  holds for i = k as 

follow. Consider i = k, we have the following properties 

without line search. 

We multiply (3.2) by gk we obtain: 
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From (2.9), (2.10) and the above inequality, we get: 
 

2 2
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1

2
,

2
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T
T k k
k k k k

k
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Repeating this process and using the fact that
2

1 1 1

Tg d g=  , which implies that: 

 
2

2 2
2 .

2

T

k k

k

g d

g



 
 − +

−
 

 

Therefore, we can deduce that (3.7) holds for k  1.  

Conclusion  

In this study, based on (Polyak, 1969), we have 

established only sufficient descent condition without 

line search. The proofs of the sufficient descent 

condition under the following conditions 0 < k
PRP   

k
FR and 1 < k

PRP   k
FR, where 0 <  < 1 and  >1, 

for the method of PRP. Moreover, this study opened 

many keys for established the global convergence of 

the method of PRP in two cases. 
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