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Introduction

As we know, Laplace transform is devised to solve
linear ordinary differential equations with constant
coefficient as well as variable coefficients. Here we apply
the Laplace transform method to solve nonhomogeneous
third order differential equation with right side as a step
function called as bulge function.

The Heaviside step function, or the unit step function,
usually denoted by H is a step function, named after
Oliver Heaviside (1850-1925), the value of which is zero
for negative arguments and one for positive arguments.

The function defined as follows known as Heaviside
step function of a bulge function:

f(t)=48 * if0<t<§ (1.1
a ift>¢

The step function of a bulge function is usually known
as Heaviside step function of a Bulge function.

Using unit step function, it is defined as:

(1) (1)
f(t)=e 2 +au(t-&)-e 2 u(t-&)

where, a, & are constants.
From (Yousef et al., 2019), the Laplace transform
function f(t) is given by:
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The Euler-Cauchy Equation

An equation of the form:

n n-1

ndy +an71t”’1 d _ dy -0
dt” dt" t

at

Here our aim is to discuss regarding solution of
nonhomogeneous third order differential equation as
Euler Cauchy Equation with Heaviside step function of a
bulge function:
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ty" +at’y" +bty' +cy = f (t),
where, f(t) is defined in (1.1).

Preliminary Notes

Here we introduce some lemmas without proof whose
results are useful in further section.

Lemma 2.1
—(t=1Y?

The Laplace transform of the bulge function e 2
expressed by:

—(t-1)?
Lle 2 |=

Lemma 2.2

is

'2{1+—1+|2 . I(s? 3+|2)}

~(t-1)*
The Laplace transform of e 2

~(t-1y e
Lle 2 u(t-&)|=A 5

2
+ABe51{23+2§21+§1} + ACegl{ 6.8
s s s

u(t-¢&1) is expressed by:

st s s

36EJ-Z+§1:|

—(t-1)?

|3
where, A= e 2 |

2
;1+L,C:_1+ i
2 2 2 6

Lemma 2.3

The Laplace transform of function f(t) as in (1.1) is
ag™*

given by M + + K, where a , & are constants.

Main Result

Here the Non Homogenous third order Euler Cauchy
equation with Heaviside step function of a Bulge function
is solved.

Theorem 3.1

The solution of the nonhomogeneous Euler Cauchy
equation of the form:

(G

t3ym+at2yn+btyr+cy: f(t): 87 2 if0<t<§1
a ift>¢

With y(0) = H, y'(0) = E, y"(0) = F is expressed by:

31

¢3 %t %t'
y:_€+Pe cosy, t+Qe?P siny;,t

e | (-1+17)aD?
+e [t[b+———)+t {Zle
RSO +-—-)+s(t-&)+u(t-&)+T(t-&)u(t-&)

w(t-g Vu(t-2)+eo' ooy, (t-& Ju(t-g W

e gin v (t-& Ju(t-& )N
Where:
_ .
2, 2 3
p_ _aD’e ¢ D e
bH, b
- .
0 #,D%a a’De 2
2by, 2b
R 97'74D3 a’ - DH,
ba H,
S_ (é+ﬂj+____
b b
T_|Al ABG
[2b b
v | AB ___}
3b
W:{— a D3+———}
by,
22 3
2y, by,
Proof

Now the given equation is:

3 m

t'y" +at’y"+bty' +cy = f (t),

With initial conditions y(0) = H, y'(0) = E, y"(0) = F.
Taking Laplace transform both sides, we get:

-5 Y(0)-57(0)-y'(0)
+aj—;(szy(5) -5(0)-y'(0))

—b(sy(s) - y(0))+cy(s) = L{F (1)}

Using D = (;j—s and boundary conditions y(0) = H, y'(0)
=E, y"(0) = F, we get:
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as

y(5)(~D° +aD?? ~bs +¢) = ~D’s*H — D’SE — D°F +aHD’s + EaD? ~bH + M + 2

+K
—-&s
~D*s?H +(~D°E +aHD?)s + (~D°F +EaD? ~bH )+ M + & 4 K
=y(s)=
y(s) (—D3s3+aDzsszs+c)
Letting ¢, =-D’’H,¢, = -D’E + aHD? ¢, = -D°F + EaD? —bH
So: 3 2
-D* aD 2
g (‘“'2){ b +T} ()
qe 4 +e2 —+ + b
B +BS+d + M + +K bs s ay . aY
y(s)= s Slis—op) | S| —5p] %
—D%? +aD?s* —bs
. . . D?
fortakmgc:Ompartlcular. (s -341%) I(sz_3+|2)(_Tj 'BaDz(sz—3+|2)
Now: +e —~ + e + e
3 4
¢lsz ¢1S S ‘:[S—ZD) +l//l:| S {[S—ZDJ +l//l:|

(3.1)

_D°® + aD%s2 _bs = . a \
-_—— + .
2D i ow:
1 N A+ Bs+C
_ —Da’+4b A = Y
where, y1 = i S|:[SZDJ H//l} [(SZDJ +%}
Similarly, we have: .
a’ a’
#,$ -4 1 Vitup? o Dy,
—D’s’ +aD’’ —bs a ) = =t — —
[S—E) +y, S|:l//1 +H:| |:[S—2Dj +l//1:l |:(S—2Dj +|//1:|
4 4 i |
_D%2+ aD%? —bs S(D332—3D25+b) ( : ) And:
A Bs+c 1 As+B Cs+E
=t aptean 2 Y T 7 =
s D's'-aD’s+b s{(s—ﬁj +l//1} StoprTp W
: 2
Hence: . ; 7%7 o
2 2
¢,D’s ¢,aD’ @ a
¢3 _ ¢3 b B b 33 B a 1 U4 Jr4Dz D| v, +4D2
"D’ +aD’s’—bs _bs | aY (33) - 2V o a ) ay a Y
) o] i) i o T3]
In continuing: Similarly:
1 A B C Js+E
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Continuing, we have:

1

Ns+ P

- E+C e
. a 2 s &2 @ ¢ a 2
S S—E +l//1 575 +y/1

4( a’ 2
—|a*-D|y, +-— 4Dl 2 _p a
a 40%)) a 212 Pt a 1
a2 2 a2 8 " a2 2 2
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s s s s
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a’ - 4D -8D  4D* = 4’ 1
az 3 az 2 2 a2 2 2 az 3
(l//l + 4D2j a[l/ﬁ +4DZ] Vi 4D?2 [l//l + 4Dzj [l/ﬁ +4DZJ

2
So, letting |y, + az = Hj, we have:
4D
_D? s a
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So:

-D% +aD?
ae “* _ae |1 b
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Using (3.1) and inverse Laplace transform, we have:

A0 0)

¢’
S)= =
. () -D°s® + aD?s’ =bs ;@ :
-— | +
2D L4

—Da’ +4b

Where, v, =

So:

2t a .
t)=—¢ e?P | cosy,t + ——siny,t
Y1( ) & { v 2Dy, t 4 :|

From (3.2) and inverse Laplace Transform, we have:

— 4,8 — —$,
—-D3%® + aD%? —bs ( a jz
S—o< | T

Y, (S)

34

(3.5)

-4
s

—D3s+aD?

bs ( a
S_i
2D

2
j +y,

(3.6)
So:
Y, (t)= # e2D siny, t
Vi

From (3.3) and inverse Laplace Transform, we have:

¢,D’ _¢aD’
¢, —¢, b b
—: 44— Y
va(s) = D% +aD?%?—bs  bs a )
*"2p) "
So:
a a
ol ia)
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From (3.4) we have:

M

y4(s) = _D%® + aD?s% —bs =A (S)+ B, (S)
+C, (s)+D, (s)+E, (s)+F (s)

So, using inverse Laplace transform we obtain:

Vo (t)=A (t)+B, (t)+C, (t)+D, (t)+E (t)+F (1)

R s 2 a _ a

A(t)=e? t.b sniz//1t+aD i—iemlcosy/lt+ 2, 2 ieZDtsinz//lt
b by, 2 |H, H, 2D DH, Jy,

2 (=1+17 1-1%)D® —_a & _a2 2 a

B, (t)=¢e? ( )+( ) a1 t+ 262 cosyt |+ o +% ieZDIsin;ult
6b b H, H, H 2DHZ DH2 )y,

= (-1+1%)aD? (p — a2 2 2_p &

C, (t)=e? ( ) {D . +Q92Dtcos%t

2 + 2
H; DH, 2H, H;

ala’-D| aa’+H,-D|1 At
H | —|-= L —e% siny,t
2D| H? | D H v
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From (3.5) we have:
ae™® ae™® —aD%4* a’D%=°
Ys (S)_ = +

= = +
s(-D%° +aD’s’ ~bs)  bs’® o a \ ] a V
s—— | + sl{s——2 | +
o) " o)
So:
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From (3.6) we have:

(s)—#
% ~ _D%®+aD?%’ —bs
So:
A AD? ) AaD? obis
yG(t)=E(t—§1)U(t—§1)—b‘/I e 2 siny, (t-&)U(t-& )+ L
1
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e*ﬁls (12 + 51}
. s s

A, 5 AlaD’
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S—o5 | T
2D
AB AB§1 2, AB§1
r(a)U(t-a ) s (-6 U (g )+ = (-4 ) (t-4)
, —-D% —aD?
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, -D% +aD?’
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In simplifying we have:
A Al 2 Al AB¢
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1
la) ~AID?
+e 2 cosy, (t—& U (t_él){by/lHl b }
So the final solution is:
V()= Y2 (1) + Y2 () + Y5 (1) +ya (t) + Y5 (8) + ¥e (t)
¢3 +e2D cosy, t —aDze_7+¢3D3+____ +e%lsinz//1t ¢2D2a+a2De7 -
bH, b 2oy, 2b
+ef[t(l+ _____ )+tz[(_l+|2)aDz+____]‘|
b 2bH,
" 4D°(a’ - DH, 3.7
+e 2 ba (aHlJ((S(t)‘I’) ( )
A a 2 Al ABE
(-a)o(-a)|[£02)e---—sf-aul-a)| o+ -]
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{6 U ) B e o (-6 )06 ) - s

a2D?
2y,

3
by,

a(t—;q)
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=

Comparative Study of Oscillatory Property
of Euler Cauchy Equation

In this section, the authors desire to have a comparative
study of oscillatory property of Euler Cauchy equation with
homogenous and Non homogenous output. Take the
homogenous equation as:

36

ty" +t?y"+ty'+ y=0,y(0)=1y'(0)=2,y"(0) =

The graph of the solution is in Fig. 1.

The equation seems to be oscillatory within the
interval and converging towards oscillation. Going within
the range [0,200] in Fig. 2, we find the equation is
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oscillatory and seems to be converging towards
oscillation within the t value from 50 to 100.

In discussion for a non homogenous equation, we have
the Euler Cauchy equation with bulge function as:

(12

Py +t%y" +ty'+y=e 2 ,y(0)=1y'(0)=2,y"(0)=3

The graph of the solution is in Fig. 3.

It seems to be oscillatory within t value from 20 to 40
(refer Fig. 3).

Similarly within the range [0,200], the graph of
solution is in Fig. 4. It seems to be oscillatory within t
value from 50 to 100.

exp(-i) (ti+2((3 1)/4-3/4) + (i/4+1/4)-..+ exp(-1) (3 1)/2+1/2)

10000+

8000

6000

4000

2000}

60 80 100
t

Fig. 1: Solution of Homogenous Euler Cauchy equation within the range [0,100]

x10°* exp(-i) (ti+13(3 1)/4-3/4) + (i/4+1/4)-...+ exp(-1) (3 1)/2+1/2)

3.5}

2.5}

1.5}

0.5}

100 150 200

Fig. 2: Solution of Homogenous Euler Cauchy equation within the range [0,200]
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exp(t-t/2-1/2) +.. .- exp(i) (ti+ exp(t-t2/2-1/2) (L/4-i/4) + t2((3 i)/4+3/4) + (i/4-1/4))

10000

8000

6000

4000

2000

40

60 80 100

Fig. 3: Solution of Non Homogenous Euler Cauchy equation with bulge function within the range [0,100]

exp(t-12425 /2) +...- exp(i) (t | + exp(t-t212-1/2) (1/4-i/4) + (3 i)/4+3/4) + (i/4-1/4))

4
35
3
2.5
2
15
1.
0.5

100
t

150 200

Fig. 4: Solution of Non Homogenous Euler Cauchy equation with bulge function within the range [0,200]

Again for discussing the non homogenous equation as
Euler Cauchy equation with heaviside step function of a
bulge function as:

(e
t3ym+t2ylr+ty’+y:e 2 +U(t_§)
—e 2 U(t-£),y(0)=1y'(0)=2,y"(0)=3

The graph of the solution for | = 1, £ = 1 within the
range [0,100] is in Fig. 5.

Within the range [0,200] the graph of solution is in
Fig. 6.

38

It seems to be oscillatory within t value from 50 to 100.

Within the range [-5000,5000] the graph of solution is
in Fig. 7.

It also seems to be oscillatory.

If the range is extended to [-10,000,10,000], we have
the graph in Fig. 8.
Main Comparison

Now using the result of (3.7), if an equation is taken to
be the linear combination of all the functions as

exponential, Dirac delta and Heaviside step functions, we
may get one equation as:
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y=e'cost+e'sint+5(t)+(t-1)U (t-1) Graph of the equation is in Fig. 9.
_ It is strongly oscillatory within the range [4,6].
2 t-1
H(t=1)U (t-1)+eTcos(t 1)U (t-1) (4.1) Similarly within the range [-100,100], the graph of
+etsin(t-1)U (t-1). equation is in Fig. 10.
It is also strongly oscillatory within the range [0,100]
by taking 1 =1, £ = 1. and varies constantly towards the oscillation.

1) +...+ exp(-1) ((heaviside(t-1) exp(t-t?/2-1/2))/2-exp(t-t¥2-1/2)/2-heaviside(t-1)/2

10000/
8000+
6000|
4000}

2000}

0 20 40 60 80 100

Fig. 5: Solution of Non Homogenous Euler Cauchy equation with heaviside step function of a bulge function within the range [0,100]

1) *, 169‘ exp(-1) ((heaviside(t-1) exp(t-t?/2-1/2))/2-exp(t-t?/2-1/2)/2-heaviside(t-1)/2

4.
35
3
2.5
2.
15

1

0.5~ 1

0 50 100 150 200

Fig. 6: Solution of Non Homogenous Euler Cauchy equation with heaviside step function of a bulge function within the range [0,200]
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1) +.. ﬂ) exp(-1) ((heaviside(t-1) exp(t-t2/2-1/2))/2-exp(t-t/2-1/2)/2-heaviside(t-1)/2
X

2.5,

1.5]

0.5|

-5000 0 5000
t

Fig. 7: Solution of Non Homogenous Euler Cauchy equation with heaviside step function of a bulge function within the range [-
5000,5000]

1)+. .+1%)§p(-1) ((heaviside(t-1) exp(t-t*/2-1/2))/2-exp(t-t?/2-1/2)/2-heaviside(t-1)/2
X

10,

-1 -0.5 0 0.5 1
x10*

Fig. 8:Solution of Non Homogenous Euler Cauchy equation with heaviside step function of a bulge function within the range
[-10000,10000]

Similarly within the range [-200,200], the graph of Similarly within the range [-500,500], the graph of
equation is in Fig. 11. equation is in Fig. 12.

It is also oscillatory within the range [0,150] and at the Here also we conclude that it is oscillatory.
point t = 100, the graph varies constantly towards the Similarly within the range [200,1000] we have the
oscillation. graph is also oscillatory as in Fig. 13.

40
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dirac(x) +...+ heaviside(x-1) sin(x-1) exp(x-1)

100

501

-100!

-150 |

-4 -2 0 2 4 6

Fig. 9: Solution of the Equation (4.1) with heaviside step function, Dirac delta function within the range [-4,6]

%104 dirac(x) +...+ heaviside(x-1) sin(x-1) exp(x-1)
T T T

2-

-2

4.
-100 -50 0 50 100

Fig. 10: Solution of an Equation (4.1) with heaviside step function, Dirac delta function within the range [-100,100]

If we compare the result (3.7) with the Equation (4.1), we function is also oscillatory as per the Fig. 5 to 8, so the

find the difference up to some values of constant. solution (3.7) satisfies as per the condition of oscillation.
Since the Equation (4.1) is oscillatory and the Euler Here the author wants to point out that the
Cauchy equation with heaviside step function of a bulge oscillatory behavior of Euler Cauchy equation is really

41
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good by taking the non homogenous output as
heaviside step function of a bulge function, since it
includes discontinuous functions like Dirac delta and

x10%
15!

0.5!

unit step function. The presence of these kind of
functions helps to measure the oscillatory behavior up
to a period of time.

dirac(x) +...+ heaviside(x-1) sin(x-1) exp(x-1)

200 150 -100  -50

100 150 200

Fig. 11: Solution of an Equation (4.1) with heaviside step function, Dirac delta function within the range [-200, 200]

X101
1o

0.5+

-15-

2L

-500

dirac(x) +...+ heaviside(x-1) sin(x-1) exp(x-1)

0 500

Fig. 12: Solution of an Equation (4.1) with heaviside step function, Dirac delta function within the range [-500,500]
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%1023 dirac(x) +...+ heaviside(x-1) sin(x-1) exp(x-1)
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Fig. 13: Solution of an Equation (4.1) with heaviside step function, Dirac delta function within the range[200,1000]

Conclusion

In this article, authors discuss about solution of
nonhomogeneous Euler Cauchy equation with heaviside
step function of a bulge function in different time domain
and at last there is a comparative study of oscillatory
behavior of the concerned equation with homogenous and
non homogenous output.

The non homogenous equation with right hand side as
piecewise continuous function like heaviside step
function, causes strongly oscillatory behavior in compare
to homogenous output.

This process of comparative study may be applicable
to check the oscillatory and non oscillatory behavior of
equation concerned to mass spring system with damping
and without damping. In the near future, we intend to
conduct more research as a continuation of this work.
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