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Abstract: It has been presented in other works and studied matrix spatially, 

or more simply in a plan, but in this case, it is necessary to move from the 

working plane to the real space, or vice versa, passage that we will present 

in this study. In the basic plan module already presented in other geometric 

and cinematic works, we want to highlight some dynamic features such as 

static balancing, total balancing and determination of the strength of the 

module after balancing. The forces that appear in the unbalanced base 

module were also presented in other papers, so we want to fill in only the 

aspects of the already balanced module forces in this study. The mechanism 

in Fig. 1 (planar cinematic chain) must be balanced to have a normal 

operation. Through a total static balancing, balancing the gravitational 

forces and moments generated by the forces of gravity is achieved, 

balancing the forces of inertia and the moments (couples) generated by the 

presence of inertial forces (not to be confused with the inertial moments of 

the mechanism, which appear separately from the other forces, being part 

of the inertial torsion of a mechanism and depending on both the inertial 

masses of the mechanism and its angular accelerations. Balancing the 

mechanism can be done through various methods. Partial balancing is 

achieved almost in all cases where the actuators (electric drive motors) are 

fitted with a mechanical reduction, a mechanical transmission, a sprocket, 

spiral gear, spool screw type. Such a reducer called the unisens (the 

movement allowed by it is a two-way rotation, but the transmission of the 

force and the motor moment can only be done in one direction, from the 

spindle to the worm gear, vice versa from the worm gear to the screw the 

force cannot be transmitted and the movement is not possible by blocking 

the mechanism, which makes it apt to transmit the movement from the 

wheel of a vehicle to its wheels in the steering mechanism, not allowing the 

wheel forces due to the unevenness of the ground, to be transmitted to the 

steering wheel and implicitly to the driver, or this mechanism is suitable for 

mechanical meters so that they do not twist and vice versa etc.) can balance 

the transmission by letting the forces and motor moments unfold, but not 

allowing the kinematic elements to influence the movement through their 

forces of weight and inertia. This results in a "forced" drive balancing from 

the transmission, which makes the operation of the assembly to be correct 

but rigid and with mechanical shocks. Such balancing is not possible when 

the actuators directly actuate the elements of the kinematic chain without 

using mechanical reducers. 

 

Keywords: Anthropomorphic Mechatronic Systems, Robots, Total Static 

Balancing, Kinetostatics 
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Introduction 

Anthropomorphic mechatronic systems are the most 

widely used robotics systems worldwide today in 

industry and in all automated environments. These 

systems are best suited to the modern automation and 

mechatronisation needs of the modern world, being 

mobile, dynamic, light, robust, complex, technologically 

simple, easy to design and manufactured, implemented, 

maintained and used in almost any industrial site, both in 

machine building and in special environments, such as 

chemical, toxic, dyeing, underwater, nuclear, in space.... 

Anthropomorphic robots are flexible, dynamic, stable, 

lightweight, fast, fast, inexpensive, easy-to-install, 

mechanical, mechanical, mechanical and mechanical 

systems with a pleasant appearance, modern industrial 

design and easy to design and implement in any 

workplace, imposed. The anthropomorphic robots are 

part of the classical series of mechatronic systems, being 

in the form of arms and having at least three space 

rotation, to which other components may eventually be 

added, thus lengthening the entire kinematic chain. You 

can also add all the planetary or spatial rotating arms or 

others that are translating. At the end we always have the 

end effector element that can be a manipulator, that is, a 

hand to grasp the objects, in which case one can speak of 

a prehensive device, that is a gripping device that today 

imitates very well a human hand even if it is one 

mechanical, may also be a painting, cutting or welding 

device, or one for machining. The base support and 

schematics of all anthropomorphic robots remain the 3R 

space system. It has been presented in other works and 

studied matrix spatially, or more simply in a plan, but in 

this case, it is necessary to move from the working plane 

to the real space, or vice versa. In the basic plan module 

already presented in other geometric and cinematic 

works, we want to highlight some dynamic features such 

as static balancing, total balancing and determination of 

the strength of the module after balancing. The forces that 

appear in the unbalanced base module were also presented 

in other papers, so we want to fill in only the aspects of 

the already balanced module forces in this study 

(Antonescu and Petrescu, 1985; 1989; Antonescu et al., 

1985a; 1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 

2000b; 2001; Aversa et al., 2017a; 2017b; 2017c; 2017d; 

2017e; 2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 

2016g; 2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 

2016n; 2016o; Berto et al., 2016a; 2016b; 2016c; 2016d; 

Cao et al., 2013; Dong et al., 2013; Comanescu, 2010; 

Franklin, 1930; He et al., 2013; Lee, 2013; Lin et al., 

2013; Liu et al., 2013; Mirsayar et al., 2017; Padula and 

Perdereau, 2013; Perumaal and Jawahar, 2013; 

Petrescu, 2011; 2015a; 2015b; Petrescu and Petrescu, 

1995a; 1995b; 1997a; 1997b; 1997c; 2000a; 2000b; 

2002a; 2002b; 2003; 2005a; 2005b; 2005c; 2005d; 

2005e; 2011; 2012a; 2012b; 2013a; 2013b; 2016a; 2016; 

2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 2017c; 

2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 2017k; 

2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 2017r; 

2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 2017y; 

2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae). 

Materials and Methods (Total Static 

Balancing of the Planar Kinematic Chain by 

the Classical Method (with Counterweight))  

Figure 1 shows the kinematic diagram of the planar 

chain and Fig. 2 shows the kinematic scheme of the 

space chain. 

The mechanism in Fig. 1 (planar cinematic chain) 

must be balanced to have a normal operation.  

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through 

various methods. 

Partial balancing is achieved almost in all cases 

where the actuators (electric drive motors) are fitted with 

a mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type. 

Such a reducer called the unisons (the movement 

allowed by it is a two-way rotation, but the transmission 

of the force and the motor moment can only be done in 

one direction, from the spindle to the worm gear, vice 

versa from the worm gear to the screw the force can not 

be transmitted and the movement is not possible by 

blocking the mechanism, which makes it apt to transmit 

the movement from the wheel of a vehicle to its wheels 

in the steering mechanism, not allowing the wheel 

forces due to the unevenness of the ground, to be 

transmitted to the steering wheel and implicitly to the 

driver, or this mechanism is suitable for mechanical 

meters so that they do not twist and vice versa etc.) can 

balance the transmission by letting the forces and motor 

moments unfold, but not allowing the kinematic 

elements to influence the movement through their 

forces of weight and inertia. 

This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks. 

Such balancing is not possible when the actuators 

directly actuate the elements of the kinematic chain 

without using mechanical reducers. It is necessary in this 

situation for a real, permanent balancing. 
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Fig. 1: The kinematic scheme of the plan chain 

 

 
 

Fig. 2: The kinematic scheme of the spatial chain 
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In addition, in situations where hypoid reducers are 

used, it is also good to have a permanent, permanent 

static balancing that achieves a normal, quiet operation 

of the mechanism and the whole assembly. 

As has already been shown, by balancing the static 

totality of a mobile cinematic chain, it is possible to balance 

the weight forces and couples produced by them, as well as 

balancing the inertial forces and the couples produced by 

them, but not balancing the moment of inertia. 

Arcing balancing methods generally did not work 

very well, the springs having to be very well calibrated, 

so that the elastic forces realized (stored) by them are 

neither too small (insufficient balancing) nor too large 

(because prematurely kinematic elements and couplers 

and also greatly forces actuators). 

The most used method is the classic one, with 

additional counterweight masses, similar to traditional 

folk fountains.  

Total balancing of the open robotic kinematic chain is 

shown in Fig. 3. 

Write the sum of the moments of the weight forces on 

element 3 relative to point O3 (relation 1): 

 

 
3

(3)

3 3 3 3
0

O s III
M m d m s m ρ= ⇒ ⋅ + ⋅ = ⋅∑  (1) 

 

Thus, the weight of the endefector load (with the 

mass carried by it) at the distance d3 to O3, plus the mass 

of the bulkhead 3 centered in the center or weight s3 at 

the distance s3 from the O3 point, are balanced by the 

weight of the supplementary mass mIII is mounted at a 

distance ρ3 from the O3 joint on the other side (i.e., on 

the extension of element 3). The balancing is like a 

scraper, or a lever of degree 1. 

In general, the mIII balancing mass is chosen and the 

mounting distance ρ3 (relationship 2) is calculated by 

computing: 
 

 3 3 3

3

s

III

m d m s

m
ρ

⋅ + ⋅

=  (2) 

 

After balancing, the mass of the element 3 

concentrated in the O3 joint acquires the value of m3 

'given by the relationship (3): 
 

 
3' 3 s III
m m m m= + +  (3) 

 
The sum of the moments of the weight forces on 

elements 2 and 3 (considered as a common platform) 

with respect to O2 (relationship 4) is written. The mass of 

element 3 is the final one obtained after balancing, m3 

'and positioned (concentrated) at point O3: 
 

2

(2 3)

3' 2 2 2 20
O II

M m d m s m ρ
+

= ⇒ ⋅ + ⋅ = ⋅∑  (4) 

 

 
 

Fig. 3: Balancing the plan cinematic chain 
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Generally choose the mII balancing mass and 

calculate the mounting distance, ρ2 (relationship 5): 

 

3 ' 2 2 2

2

II

m d m s

m
ρ

⋅ + ⋅

=  (5) 

 

After balancing the mass of the entire planar 

kinematic chain (consisting of elements 2+3) is 

concentrated in the O2 joint and gets the value m2 'given 

by the relationship (6): 

 

2 ' 3 ' 2 II
m m m m= + +  (6) 

 

Theoretical justification of the method used:  

The forces whose moments must be written against a 

joint (fixed or mobile) are all parallel to each other, 

oriented vertically downwards (or upwardly with 

negative values) and have the value (module) given by 

the product between that mass and the gravitational 

acceleration.  

If in moments relation we simplify everywhere with 

g, then this sum of moments appears as a sum of masses 

amplified each with the arm of that force.  

But also the arms of the forces are similar to the 

distances from the point where the mass is concentrated 

to the articulation against which the moments of the 

weight forces are written, so that all arms of the weight 

forces can be replaced with the respective distances.  

Finally, the relation of the moments of the weight 

forces to the joint will be the sum of the mass products 

away. This is more convenient, but it can only be used 

after appropriate theoretical justification. 

Results (Kinetostatic of Balanced Plan 

Cinematic Chain) 

The kinetostatic of the balanced plan cinematic chain 

means the determining of forces from this chain. 

Cinetostatic means the study of the distribution of the 

forces of a kinematic chain by analyzing them on the whole 

kinematic chain, or on modules (element or several 

elements interconnected) considered each separately.  

The study of all the forces acting within the 

kinematic chain is instantly made in the form of a 

picture of the cinematic chain in a certain position 

(similar to the kinematic study, which deals only with 

the study of the positions, velocities and accelerations 

of the cinematic chain instantly photographed in a 

certain position considered). 

The forces and moments that occur in the unbalanced 

mechanism are more and more dispersed, but in general 

the mechanisms used in practice are already balanced for 

the sake of good functioning, so that the cinematic study 

of a fully balanced cinematic chain is more justified. 

Starting from the well-balanced kinematic chain 

shown in Fig. 3, the torsion of the forces existing on this 

cinematic chain is instantly photographed at any 

position, as shown in Fig. 4. 
 

 
 

Fig. 4: The kinetostatic of the balanced plan cinematic chain 
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For the beginning, the cinetostatic element of the 

second element, which also carries the mass m3 'of the 

element 3, so that the element 2 supports the effect of the 

whole balanced kinematic chain, considered welded 

(similar to a platform), the element 3 being replaced by 

the mass m3', inertia and weight forces of the mass m3'. 

Since the mechanism has already been balanced, 

weight forces no longer produce effects and they are 

removed from subsequent calculations to make drawing 

and relationships more difficult. It is considered to be 

only the final result of the weight of the entire balanced 

kinematic chain, GO2, which no longer produces any 

moment on this point, but only generates a vertical 

component of the O2 coupling reaction. 

Only the inertial forces will be considered in the 

following cinematic calculations, with the important 

statement that the total static balancing actually 

annihilates the effects of the inertial forces, so that the 

study aims to present these forces to their knowledge, 

observing (checking) towards the end of the calculations 

that and their effects have been canceled by the total 

balancing already done. 

We recall, from the kinematic study, the accelerations 

of the O3 point (the last two system relationships 7 

positions, speeds and accelerations): 

 

3 3

3 3

3 3

2 20 2 20

2 20 20 2 20 20

2 2

2 20 20 2 20 20

cos ; sin ;

sin ; cos ;

cos ; sin

O O

O O

O O

x d y d

x d y d

x d y d

ϕ ϕ

ϕ ω ϕ ω

ϕ ω ϕ ω

 = ⋅ = ⋅


= − ⋅ ⋅ = ⋅ ⋅

 = − ⋅ ⋅ = − ⋅ ⋅


ɺ ɺ

ɺɺ ɺɺ

 (7) 

 

With the help of the relations (7) the inertia forces 

from the inertia torch (8) of point O3 are written: 

 

3 3

3 3

3 3

2

3 ' 3 ' 2 20 20

2

3' 2 20 20

2

3 ' 3 ' 2 20 20

2

3' 2 20 20

3

( ) cos

cos

( ) sin

sin

x

iO O

y

iO O

iO O

F m x m d

m d

F m y m d

m d

M J

ϕ ω

ϕ ω

ϕ ω

ϕ ω

ε

 = − ⋅ = − ⋅ − ⋅ ⋅

= ⋅ ⋅ ⋅


= − ⋅ = − ⋅ − ⋅ ⋅


= ⋅ ⋅ ⋅

 = − ⋅


ɺɺ

ɺɺ  (8) 

 

From the inertia torque of the point O3 given by the 

system relations (8), we are currently interested only in 

inertial forces at the point O3 oriented on the axes x and y 

(basically the scalar components of the inertial force 

given by mass m3'), they producing the effect on element 

2. We intend to write the sum of the forces acting on the 

2-3 kinematic chain separated on the x and y-axes as well 

as the sum of the moments of the torques produced by 

the inertial forces on the chain from the O2 point. In 

addition to O3, we also have the inertial forces given by 

mass m2 from point s2 (system relations 9) and the inertia 

forces given by the equilibrium mass mII in point I2 

(system relations 10): 

 

2 2

2 2

2

2 2 2 20 20

2

2 2 2 20 20

cos

sin

x

iS S

y

iS S

F m x m s

F m y m s

ϕ ω

ϕ ω

 = − ⋅ = ⋅ ⋅ ⋅


= − ⋅ = ⋅ ⋅ ⋅

ɺɺ

ɺɺ

 (9) 

 

 2 2

2 2

2

2 20 20

2

2 20 20

cos

sin

x

iI II I II

y

iI II I II

F m x m

F m y m

ρ ϕ ω

ρ ϕ ω

 = − ⋅ = − ⋅ ⋅ ⋅


= − ⋅ = − ⋅ ⋅ ⋅

ɺɺ

ɺɺ

 (10) 

 

We have prepared the inertial forces acting on 

element 2 and we can begin to study the equilibrium 

forces equations for element 2 (but also taking into 

account the effects of element 3). First we write the 

equilibrium of the forces on the horizontal axis, x 

(relations 11), from which the horizontal component of 

the O2 coupling reaction will finally be determined: 

 

2

2

2 2

(2) 3' 2 20 20 2 2 20 20

2

2 20 20

2

3' 2 2 2 20 20 12

3' 2 2 2

12

0 cos cos

cos 0

( ) cos 0

0

0

x

x

II O

x

II II

II II

x x

O

F m d m s

m R

m d m s m R

but m d m s m dueto balanced

R R

ϕ ω ϕ ω

ρ ϕ ω

ρ ϕ ω

ρ

 = ⇒ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ + =

⇒ ⋅ + ⋅ − ⋅ ⋅ ⋅ + =

 ⋅ + ⋅ − ⋅ =

⇒ ≡ =

∑

 (11) 

 
Next, a force (equilibrium of forces) projected on the 

vertical axis, y, on element 2 (but also with respect to the 

loads on element 3) is made and determine the vertical 

component of the fixed coupling reaction (considered 

fixed) O2 (relationships 12): 
 

2 2

2 2

(2) 3' 2 20 20 2 2 20 20

2

2 20 20 2' 12

2

3' 2 2 2 20 20 2' 12

3' 2 2 2

12 2'

0 sin sin

sin 0

( ) sin 0

0

y

y

II

y

II II

II II

y y

O O

F m d m s

m m g R

m d m s m m g R

but m d m s m dueto balanced

R R m g G

ϕ ω ϕ ω

ρ ϕ ω

ρ ϕ ω

ρ

 = ⇒ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅

− ⋅ ⋅ ⋅ − ⋅ + =

⇒ ⋅ + ⋅ − ⋅ ⋅ ⋅ − ⋅ + =

 ⋅ + ⋅ − ⋅ =

⇒ ≡ = ⋅ =

∑

 (12) 

 
It can be seen that the loads in the couplings are 

minimal precisely due to balancing. 

The effect of inertial forces (couples produced by 

these forces) is canceled (due to balancing). Couples by 

weight are also canceled due to balancing. 

Balanced final weight also produces only one effect 

on the kinematic chain, a vertical load (causes a vertical 

reaction) in the fixed coupler. 

At full balancing, even horizontal load from the fixed 

coupler disappears. 

The only remaining load is constant and therefore it 

does not pose a high risk of wear, it does not create 

dynamic shocks, the mechanism has a normal (quiet) 

running behavior. 
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It will also write a sum of moments relative to the 

fixed joint on element 2 (but also considering the effects 

on element 3), (relations 13): 

 

2 2 3

3 2 2

2 2 2

2

(2)

2 20

2 20 2 20 2 20

2 20 2 20

2 2 2 2

3' 2 20 20 20 3' 2 20 20

0 cos
2

sin sin cos
2

cos sin 0
2 2

cos sin sin co

x

O m iO

y x y

iO iS iS

x y

iI iI iO

m

M M F d

F d F s F s

F F M

M m d m d

π
ϕ

π
ϕ ϕ ϕ

π π
ρ ϕ ρ ϕ

ω ϕ ϕ ω ϕ

 
= ⇒ − ⋅ ⋅ − 

 

 
− ⋅ ⋅ − − ⋅ ⋅ − ⋅ ⋅ − 

 

   
+ ⋅ ⋅ − + ⋅ ⋅ − + =   

   

⇒ − + ⋅

∑

2 2 2 2 2

20

2 2 2 2

2 2 20 20 20 2 2 20 20 20

2 2 2 2

2 20 20 20 2 20 20 20

* * *

2 2 2

s

cos sin sin cos

cos sin sin cos

0 0

II II

O m O m O

m s m s

m m

J M J M J

ϕ

ω ϕ ϕ ω ϕ ϕ

ρ ω ϕ ϕ ρ ω ϕ ϕ

ε ε ε














− ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅
− ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

− ⋅ = ⇒ − ⋅ = ⇒ = ⋅

 (13) 

 

2

*

O
J  (the momentum of mass or mechanical inertia of 

element 2, plus the influence of the mass of element 3), 

is calculated by the relation (14): 
 

2 2

* 2 2 2 2

3' 2 2 2 2 3' 2O O II
J J m d m s m m dρ= + ⋅ = ⋅ + ⋅ + ⋅  (14) 

 

It follows that from the momentary equilibrium to the 

fixed coupler on the element 2 and considering the 

influence of the element 3, it is possible to determine the 

necessary motor moment, which must be generated by 

the actuator 2, mounted in the coupling O2 (relation 15). 

 

 ( )
2 2

* 2 2 2

2 2 2 2 3 ' 2 20m O II
M J m s m m dε ρ ϕ= ⋅ = ⋅ + ⋅ + ⋅ ⋅ ɺɺ   (15) 

 

Observation. The motor torque 3 only acts on the 

element 3 broken by the element 2 (i.e., it is an action of 3 

relative to 2, or more precisely the element 3 is actuated 

by the element 2 by this motor moment 2). Nor was the 

moment of inertia considered for the same reasons. It acts 

only on element 3 considered separately (broken by 2). 

The influence of the mass m3 'on element 2 is shown by 

the final mass m2' which also contains the mass m3'. 

This is followed by the separate cinetostatic study of 

element 3 broken by element 2. To make this study 

much easier, the following considerations will be taken 

into consideration: All the forces of weight and inertia 

acting on element 3 are already balanced so that they no 

longer influence the dynamics element. Neither the 

gravitational forces nor the inertial forces no longer 

couples at the O3 reduction point, as these couples are all 

canceled due to element balancing. Making the sum of 

the moments of all forces on the element 3 relative to the 

mobile O3, (relation 16) we will observe that the motor 

moment 
3
m

M  of the actuator 3 is only balanced with the 

3
O

M  moment of inertia: 

( )

3

3 3 3 3 3 3

3

(3)

3 3

2 2 2

3 3 3 3 30

0

0 0

O

m iO m O m O

m s III

M

M M M J M J

M m d m s m

ε ε

ρ ϕ

= ⇒

+ = ⇒ − ⋅ = ⇒ = ⋅

⇒ = ⋅ + ⋅ + ⋅ ⋅

∑

ɺɺ

  (16) 

 

The vertical component of the inner cup O3 reaction 

is determined by realizing the equilibrium projections on 

the y-axis of all the forces acting on the element 3 

(relation 17): 

 

(3) 3' 23

23 3'

32 23 3'

0 0
y y

y

y y

F m g R

R m g

R R m g

 = ⇒ − ⋅ + =

⇒ = ⋅

⇒ = − = − ⋅

∑
 (17) 

 

The horizontal component of the reaction from the 

mobile kinematic couple O3 is null ( )23 32
0

x y
R R= − = . 

Discussion 

The mechanism in Fig. 1 (planar cinematic chain) 

must be balanced to have a normal operation.  

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through 

various methods. 

Partial balancing is achieved almost in all cases 

where the actuators (electric drive motors) are fitted with 

a mechanical reduction, a mechanical transmission, a 

sprocket, spiral gear, spool screw type. 

Such a reducer called the unisens (the movement 

allowed by it is a two-way rotation, but the 

transmission of the force and the motor moment can 

only be done in one direction, from the spindle to the 

worm gear, vice versa from the worm gear to the screw 

screw the force cannot be transmitted and the 

movement is not possible by blocking the mechanism, 

which makes it apt to transmit the movement from the 

wheel of a vehicle to its wheels in the steering 

mechanism, not allowing the wheel forces due to the 

unevenness of the ground, to be transmitted to the steering 

wheel and implicitly to the driver, or this mechanism is 

suitable for mechanical meters so that they do not twist 

and vice versa etc.) can balance the transmission by letting 

the forces and motor moments unfold, but not allowing 

the kinematic elements to influence the movement 

through their forces of weight and inertia.  
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This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks. 

Such balancing is not possible when the actuators 

directly actuate the elements of the kinematic chain 

without using mechanical reducers. It is necessary in this 

situation for a real, permanent balancing. 

In addition, in situations where hypoid reducers are 

used, it is also good to have a permanent, permanent 

static balancing that achieves a normal, quiet operation 

of the mechanism and the whole assembly. 

As has already been shown, by balancing the static 

totality of a mobile cinematic chain, it is possible to 

balance the weight forces and couples produced by 

them, as well as balancing the inertial forces and the 

couples produced by them, but not balancing the 

moment of inertia. 

Arcing balancing methods generally did not work 

very well, the springs having to be very well calibrated, 

so that the elastic forces realized (stored) by them are 

neither too small (insufficient balancing) nor too large 

(because prematurely kinematic elements and couplers 

and also greatly forces actuators). 

The most used method is the classic one, with 

additional counterweight masses, similar to traditional 

folk fountains.  

Total balancing of the open robotic kinematic chain is 

shown in Fig. 3. 

Conclusion 

Through a total static balancing, balancing the 

gravitational forces and moments generated by the forces 

of gravity is achieved, balancing the forces of inertia and 

the moments (couples) generated by the presence of 

inertial forces (not to be confused with the inertial 

moments of the mechanism, which appear separately 

from the other forces, being part of the inertial torsion of 

a mechanism and depending on both the inertial masses 

of the mechanism and its angular accelerations. 

Balancing the mechanism can be done through 

various methods. Partial balancing is achieved almost in 

all cases where the actuators (electric drive motors) are 

fitted with a mechanical reduction, a mechanical 

transmission, a sprocket, spiral gear, spool screw type. 

Such a reducer called the unisens (the movement 

allowed by it is a two-way rotation, but the 

transmission of the force and the motor moment can 

only be done in one direction, from the spindle to the 

worm gear, vice versa from the worm gear to the screw 

the force cannot be transmitted and the movement is not 

possible by blocking the mechanism, which makes it apt 

to transmit the movement from the wheel of a vehicle to 

its wheels in the steering mechanism, not allowing the 

wheel forces due to the unevenness of the ground, to be 

transmitted to the steering wheel and implicitly to the 

driver, or this mechanism is suitable for mechanical 

meters so that they do not twist and vice versa etc.) can 

balance the transmission by letting the forces and motor 

moments unfold, but not allowing the kinematic 

elements to influence the movement through their forces 

of weight and inertia.  

This results in a "forced" drive balancing from the 

transmission, which makes the operation of the assembly 

to be correct but rigid and with mechanical shocks.  

Such balancing is not possible when the actuators 

directly actuate the elements of the kinematic chain 

without using mechanical reducers.  
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