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Abstract: Nowadays, a cloud-edge computing framework with IoT offers 

different medicinal facilities by classifying a massive amount of patients’ 

health data through a Deep Neural Network. But, how to optimize task 

scheduling while carrying multiple tasks from multiple edge devices in real-

time was still challenging. This article introduces a cooperative cloud-edge 

computing structure to effectively perform the fuzzy DNN classification into 

the edge system and handle the computationally complicated tasks of DNNs. 

First, the edge servers are constructed with fuzzy DNNs and cooperate with 

the cloud to create a cooperative cloud-edge computing paradigm. Then, an 

adaptive deployment method is developed using a Lion Optimization 

Algorithm, which supports the cloud to decide which task will be executed at 

the edge devices. Therefore, the study of fuzzy DNN using health data is 

performed for forecasting and diagnosing various diseases. Finally, the 

simulation outcomes reveal that the LOA achieved 37.8Jin energy use and 

17.8ms latency while using 25 edge devices. Also, the fuzzy DNN achieved 

85.8% accuracy for classifying the medical data and diagnosing them in the 

earlier stage. It concludes that LOA and fuzzy DNN are more efficient than 

classical optimization and classification for healthcare applications using the 

cloud-edge computing paradigm. 

 

Keywords: Iot Cloud Edge Computing, Healthcare Systems, Deep Neural 

Network, Task Distribution, Fuzzy Classifier, Lion Optimization Algorithm 
 

Introduction 

The Internet-of-Things (IoT) is the way of developing 
and forming Internet-coupled things utilizing computer 
systems. It is improved to have many fewer effective systems 

like a wrist band, air-conditioner, etc. Such improved IoT 
items include technical reasoning capabilities for 
performing distributed tasks without the need for a name 
or individuality (Gokhale et al., 2018; Hassan et al., 2020; 
Shah et al., 2019). IoT technology is often assisted by the 
cloud to improve efficiency concerning the maximum 

resource use, storage, power and computational ability. Also, 
cloud or edge computing gets support from IoT technology 
through enhancing the possibility to manage the present 
world and distribute several innovative facilities in a 
dynamic and dispersed way. 

The IoT-based cloud method will be expanded for 

developing innovative facilities and uses in smart settings 

(Botta et al., 2016; Lei et al., 2021; Kaur, 2020). The 

mixture of cloud/edge and IoT-based web use is effective 

compared to the classic cloud-based systems. Such mixed 

technology will be used in applications such as healthcare 

(Dang et al., 2019), defence (Fraga-Lamas et al., 2016) and 

financial services (Asadi et al., 2017). Mainly, the cloud-

based IoT system is helpful to offer adequate facilities for 

healthcare purposes for forecasting and to access the files 

from any distant site. The forecasting system is designed 

by merging these technologies to efficiently forecast the 

patient’s information, even at a remote location, which is 

helpful for doctors. 

In IoT, huge amounts of resources generate the essential 

information in the real world with no conflicts like reliability 

to discover the practical information framework 

(Mahdavinejad et al., 2018; Adi et al., 2020). These are all 

assumed to be one of the significant challenges in IoT. 

However, these challenges result in a large number of 

changes in current innovations. In this situation, the IoT 

paradigm encompasses several sources of information where 

a combination of this information to create emerged facilities 

becomes a complicated problem. Smart healthcare systems 

engage many components which carry observed data, which 
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has to be combined in an automated way. The single sensor 

takes adequate data and however, if several sensors' 

information is evaluated, it may describe the essential data 

regarding configuration alterations.  

This information fusion from many sensors enhances 

accurateness in practical information. Additionally, it 

minimizes the quantity of information to be analyzed. From 

this perspective, a Context-aware Data Fusion Technique 

(CDFT) (Saranya and Fatima, 2020) has been designed. 

First, information from IoT systems was collected and pre-

processed to create it apparent for the merging process. The 

edge-based noise removal method was applied to pre-process 

the report, which tries to label the unlabeled features in the 

collected information. So, information merging was 

performed precisely. Then, CDFT was conducted, which 

uses the information from many IoT systems together based 

on the context. This fused information was transmitted to 

the cloud through edge servers. Moreover, the Deep 

Neural Network (DNN) algorithm has been executed to 

classify the received data in medical applications to 

detect and diagnose different diseases. 

On the other hand, the fast explosion of IoT can produce 

a huge amount of information to be processed, including the 

excess capacity of the cloud server. The data is processed at 

the edge system to solve this problem, which lessens the 

cloud workloads and training time. Also, a lightweight DNN 

has been applied on edge servers to reduce the number of 

training factors in DNN and the computational burden of 

edge servers. In contrast, edge servers do not use adequate 

resources for processing and analyzing several data. So, an 

auto encoder-based lightweight DNN has been introduced 

for decreasing the information dimensionality on the edge 

servers. The encoder of the DNN was positioned on 

edge for reducing the information dimensions. After, 

such information was transmitted to the cloud server 

and restored the essential guidance for performing the 

classification task for healthcare purposes. But, how to 

accommodate multiple tasks from multiple edge 

devices in real-time was still challenging. 

Therefore, in this study, a cooperative cloud-edge 

computing paradigm is designed by considering how to 

execute the fuzzy DNN classifier on the edge servers 

optimally. The main goal of this paradigm is to manage 

the computational tasks of DNNs and optimize the task 

scheduling by the lion optimization approach in the IoT 

scenario. Also, the edge systems are configured with 

DNNs by evaluating the computational intensity and 

latency. Besides, the cloud servers collaborate with the 

edge servers to build the cooperative cloud-edge 

computing paradigm. Then, an adaptive deployment 

method is designed to guarantee the load-balancing of 

edge servers by the LOA, which considers different 

factors. According to this optimization, the cloud server 

decides which task is executed at the edge devices. Thus, 

it performs the task of fuzzy DNN using health data to 

forecast and diagnose disorders efficiently. Additionally, 

it improves the classification accuracy and lessens the 

energy use of edge and cloud servers. 

Literature Survey 

A hybrid simulated Ant Colony Optimization (ACO) 

algorithm (Xian-Jia, 2015) has been presented for 

scheduling the tasks on the edge nodes based on the 

determination of the node’s computing capacity, memory 

and bandwidth. However, a few parameters were not 

thoroughly examined to improve the efficiency of cloud-

edge services. An integrated decision support method 

(Samuel et al., 2017) has been designed, which computes 

different heart failure traits and their contributions with 

the aid of an expert cardiac physician. Also, a Fuzzy 

Analytic Hierarchy Process (Fuzzy_AHP) method was 

applied for determining the global weights for the traits 

according to their separate contribution. After, the global 

weights, which indicate the contributions of the 

characteristics, were used for learning Artificial Neural 

Network (ANN) classification, which estimates the heart 

failure risks in patients. But it could not optimize the 

hidden neurons automatically and was not suitable for the 

vast number of instances. 

An effective Privacy-Preserving Disease Prediction 

(PPDP) (Zhang et al., 2018) method has been developed in 

which the historical health information was encrypted and 

outsourced to the cloud. Then, this information was used for 

learning the prediction frameworks with the help of single-

layer perceptron training in a privacy-preserving manner. 

But it has a high computation cost and error rate. 

An Energy-Efficient Particle Swarm Optimization-based 

Clustering (EEPSOC) method (Alabdulatif et al., 2019) 

has been developed for effectively choosing the cluster 

heads among different IoT systems. First, the IoT systems 

deployed to observe the medical information were 

clustered and the cluster head was chosen based on the 

EEPSOC for data transfer. Further, an ANN-based 

classifier was introduced to diagnose the medical 

information in the cloud and recognize the severity of the 

syndromes. But it takes more training time and its 

efficiency depends on the number of instances. 

A new generalized cloud healthcare system (Liu et 

al., 2019) has been developed using Digital Twin 

Healthcare (CloudDTH) to forecast, diagnose and 

estimate the characteristics of the fitness of individuals. 

Also, the conceptual framework of DTH was built for 

executing the facilities like real-world forecasting for 

the elderly. But its accuracy was not analyzed and also, 

the computation time was high. 

For predicting and monitoring chronic kidney disease 

within its severity range, an IoT with a cloud-based 

healthcare decision support framework 

(Lakshmanaprabu et al., 2019) was built. First, the 

patient information was gathered with the help of IoT 
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systems fixed to the customer, which was accumulated in 

the cloud, including the associated health documents from 

the UCI repository. Also, the DNN classification was used to 

predict chronic kidney disorder and its severity range. 

Further, a PSO-based attribute choice scheme was applied to 

increase the DNN efficiency. But its complexity was high 

while considering more instances. 

The combination of cloud-edge computing for IoT 

information analysis (Ghosh and Grolinger, 2019) was 

investigated. A deep learner was presented for reducing 

the amount of information on the edge with Machine 

Learning (ML)-based classification on the cloud. The 

encoder of the auto-encoder was situated on the edge to 

reduce the information size. The reduced information was 

forwarded to the cloud, where it was directly applied to 

ML to classify human activities. But its classification 

accurateness was not highly effective. 

An intelligent electronic gastroscope model (Ding et al., 

2019) was developed depending on the cloud-edge 

cooperative system. In this model, a Tinier-YOLO 

algorithm was designed depending on the k-DSC unit in 

the edge-computing system for identifying the lesion or 

finding abnormal frames. Then, the lesion ROI partition 

was combined with the YOLOv3 algorithm in the cloud 

system to enhance the modelling efficiency. On the other 

hand, its accuracy depends on the selection of threshold 

values to estimate the similarity. 

A layered structure of protected edge-cloud-based 

medical framework (Jayaram and Prabakaran, 2020) has 

been suggested for real-world forecasting and treatment 

of disorders. Using this framework, privacy-preserving 

additive homomorphic cryptography was added to 

guarantee information privacy at the edge computing 

device. Additionally, the efficient pre-processing methods 

reduced the reaction interval and system facility between the 

edge and cloud systems. Further, each patient's information 

needs from various geographic sites were analyzed in a cloud 

by the dynamic weighted probabilistic classification to 

predict the onboard disorder. But the system response period 

was comparatively high. 

Health Fog (Tuli et al., 2020) developed a new method 

for combining hybrid deep learning in edge computing 

systems and has put it to use in real-world applications for 

automated heart disease prediction. Using this method, 

healthcare was provided as a fog facility by IoT systems and 

the heart patient’s information was effectively handled. 

Then, a Fog-enabled cloud model called Fog Bus was 

applied for deploying and evaluating Health Fog’s 

efficiency. But, it has less robustness and accuracy since it 

does not enable cost-optimal implementation. 

A practical framework (Bhatia et al., 2020) has been 

developed for forecasting home-centric urine-based 

diabetes. It has four different layers: Diabetic information 

collection, diabetic information categorization, diabetic-

extraction and diabetic estimation and decision-making 

layers to predict and forecast the diabetes-oriented urine 

virus. Also, the probabilistic analysis of urine-based diabetes 

forecasting based on the degree of diabetic disease was 

quantified as a diabetes disease factor for prediction by the 

Recurrent Neural Network (RNN). Further, the occurrence 

of urine-based diabetes was visualized depending on the self-

organized mapping process. On the other hand, the system 

stability and reliability were not adequate while increasing 

the number of instances. 

A smart medical framework (Ali et al., 2020) has been 

developed for predicting heart disorder with the aid of 

deep ensemble learning and attribute merging schemes. 

Initially, attribute merging was applied to integrate the 

mined attributes from both sensed and electronic 

healthcare data for creating useful medical information. 

Then, the information gain method was used to remove 

the redundant and inappropriate features. Also, a 

conditional probability method was applied to determine 

the particular attribute weight for every label and the 

ensemble deep learning structure was learned to predict 

the heart disorder. But, it is not able to handle a large 

number of attributes and medical files. Also, noisy and 

missing data were not effectively eliminated. 

A tree-based deep model (Chauhan et al., 2021) was 

developed for recognizing the facial features in the cloud 

system. An extra dimension was separated into a small 

portion and a stick was prepared for all portions. Then, the 

tree was represented by its branch region and stature. The 

leftover efficiency defined the branches, including a two-

fold layer, a stack player strategy and a non-direct 

efficiency. The inside and out patterns were presented for 

the PC without concentrating on constant efficiency. But 

it requires more advanced algorithms for achieving load-

balancing in cloud scenarios. 

Proposed Methodology 

In this section, the proposed algorithm is explained 

briefly. Fig. 1 portrays the schematic representation of the 

proposed cloud-edge computing framework in healthcare 

systems. First, the patient’s health information observed 

by IoT systems is collected and pre-processed using the 

CDFT for merging such information. This merged 

information is then forwarded to the cloud servers via 

edge devices.  

Then, the cloud server and edge devices collaborate to 

determine different system factor limits such as task 

latency, energy use and processing ability. The aim of 

LOA (Yazdani and Jolai, 2016) is to learn these 

determining factors for other edge devices and to find the 

optimal set of characteristics. Based on these optimized 

factors, the cloud server decides which task of fuzzy DNN 

(illustrated in Fig. 2) will be executed at the edge device 

and which task fuzzy DNN will be implemented at the 

cloud nodes. Thus, the medical data is classified by 

implementing the fuzzy DNN to predict and diagnose 



S. S. Saranya and N. Sabiyath Fatima / Journal of Computer Science 2021, 17 (11): 1116.1127 

DOI: 10.3844/jcssp.2021.1116.1127 

 

1119 

different disorders on time. By optimizing the task 

execution, it can balance the load between cloud and edge 

devices effectively. 

Cooperative Cloud-Edge Network Model 

If the cloud server accepts fuzzy DNN from the client, it 

decides which task is executed at the edge devices based on 

the optimization criteria. If the requirements are not reached 

to complete the task at the edge device, then the task will be 

performed at the cloud nodes adaptively. The cooperative 

cloud-edge computing paradigm is designed to execute the 

fuzzy DNN operations dynamically to achieve this 

process. First, the cloud forwards the initial factors of 

the fuzzy DNN framework to the edge devices. While 

the learning tasks arrive, the edge device performs the 

task framework and transports the jth layer outcome 

attribute map (𝒜ij) to the cloud. 

The cloud performs the residual layer of the fuzzy DNN 

and estimates the error value. The back-propagation learns 

this framework and the factors are mutually fine-tuned. The 

error value is denoted as 𝔏(p). Every node 𝑖  comprises a 

local framework factor pi(t) where t = 0,1… is the number of 

iterations. At t = 0, the local factors for each node are 

assigned to an equal range. The local framework factor is 

fine-tuned after each iteration as: 
 

      1 1i i ip t p t f p t      (1) 

 

> 0 denotes the step size and f(p) denotes the gradient 

value. After each iteration, the model factors of each node 

are subject to a global fine-tuning and fused as: 
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1

1

u

i ii

u

ii

w t
p t 







 (2) 

 

In Eq. (2), 𝒰i denotes the number of tasks executed by 

node i per unit period. It preserves the factor 

synchronization of each edge node. 

Adaptive Deployment Model for Optimization-based 

Decision-Making System 

An adaptive deployment model is presented for 
configuring the cloud server, which decides the task 
execution between the edge and cloud system. In this 
model, the computational cost, energy usage, 
processing ability and latency are analyzed based on 
the task arrival. The LOA is applied to optimize the 
fuzzy DNN factors with several limits on latency, energy 
use and processing ability. It is used for load-balancing of 
edge nodes and cloud servers. 

Processing Ability Limit 

In the fuzzy DNN framework, every layer executes 

different functions and engages a considerable storage 

space. Consider the computation capacity of every layer 

of fuzzy DNN framework execution is 𝒮 = {𝒮1,…,𝒮n} 

Consider the storage space engaged by every layer of the 

fuzzy DNN is  1, , n  . Initially, assume the 

computation capacity of the fuzzy DNN framework and 

neglect the bias factor for simplification. 

The computation capacity𝒮i executed by ith the 

outcome attribute map determines the layer (𝒜i2), 

convolution kernel  2

ik , the number of input channels 

(Qi-1) and outcome (Qi) entirely as 2 2

1i i i ii k  . 

According to the computation capacity 𝒮 of every layer 

network, the sum computation capacity 𝒮𝑡𝑗  of the pre-𝑗 
layer, fuzzy DNN is acquired as: 

 

2 2
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j
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In Eq. (3), the outcome attribute map 𝒜i2 is calculated 

using the input matrix dimension 𝒜si, the convolution 

kernel dimension 𝒞ki, the aggregation dimension 𝒫oi and 

the step range Li represented as: 

 
2

2 2
1i i i

i

s k o
i
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  
 

 (4) 

 

The storage footprint of the fuzzy DNN framework 

primarily involves two segments: The overall factor size 

and each layer’s outcome attribute map. The factor size is 

the overall weight factor of every layer of the fuzzy DNN. 

The attribute map is the dimension of the attribute 

outcome by every layer of the network in the execution. 

The overall factor size pmi of ith the layer is associated 

with 2

1,i ik  and Qi as 2

1i i i iPm k  . Also, the attribute 

map dimension 2

i i iMap  . The storage footprint of the 

earlier 𝑗-layer fuzzy DNN is determined as: 

 

1 1

j j
j

i i

i i

t Pm Map
 

    (5) 

 

If 𝒟tj of the earlier j-layer fuzzy DNN is lower than the 

storage space g of the edge device, the limits are reached. 

It is established that the storage space of the edge 

aggregator relates to the smallest amount of edge devices; 

thus, minor ranges of factor 𝒢0 = min{𝒢1,…,𝒢g} where 𝒢 
is the number of edge devices is considered. Since the 

functioning network in the edge device considers a 

particular quantity of storage space, few memory limits of 

the edge nodes are defined. A threshold is assigned that 

𝒟tj of the earlier 𝑗-layer fuzzy DNN is similar to 0 = 80% 

of the least storage space 𝒢0 i.e., the edge device storage 

is previously saturated. 
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Fig. 1: Schematic representation of proposed cloud-edge computing framework 

 

 
 

Fig. 2: Structure of fuzzy DNN classifier 

 

Task Latency Limits 

Regarding the limits of task latency, the highest 

latency 𝒯high permitted by the task is mainly made up of 

the edge system latency 𝒯CE, the cloud processing latency 

𝒯CP, the edge-to-cloud transfer latency 𝒯CE and the cloud-

to-edge uplink transfer latency 𝒯CE.  

In the edge system, because the gap amid the edge 

devices is highly near, the transfer latency is small. 

Therefore, 𝒯ES only comprises the task waiting and 

execution latency. Consider that there are 𝒦 training tasks 

that appear in a particular time, represented as {x1,…, xk}. 

The execution period is defined as: 

 

,

j

QP Exe k

i

t
t dx   (6) 

 

In Eq. (6), Fi denotes the highest number of Floating-

Spot Operations Per Second (FLOPS) of edge node j and 

𝒮tj denotes the computation capacity of the task xk. 

Consider that the task arrives separately; so, the M/M/N 

queuing framework is simulated the queuing in the edge 

node. The waiting period is determined as: 
 

 ,

j

k
QP Wait j

i i k

a t
t

a t



 (7) 

 

In Eq. (7), ak refers to the arrival rate of xk. The overall 

task queuing and processing latency is represented as: 
 

, ,QP QP Exe QP Waitt t   (8) 

 

Considering that the cloud computation rate is FC, the 

cloud processing latency is represented as: 

 

 n j

CP k

C

t t
dx


   (9) 
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For the edge-to-cloud transfer latency 𝒯EC, it is limited 

using the quantity of task information uploaded. In 

connection with an inadequate frequency band, if the 

edge-to-cloud forwards a huge amount of data, the task 

latency is critically influenced. Therefore, the quantity of 

information despatched via the task must be limited, 

which is equal to the transmission system bandwidth BH and 

the efficiency of edge devices R. The highest information 

from the edge system to the cloud is defined as: 

 

 0 min min ,H i EC  (10) 

 

Because the edge-to-cloud information transfer quantity 

is identical to the attribute map dimension of j layer of the 

fuzzy DNN Mapi, the quantity of information is definite. So, 

the edge-to-cloud information transfer latency 𝒯EC is 

obtained. For the cloud-to-edge uplink transfer latency 𝒯CE, 

every task may choose the adjacent edge node for processing 

the task information represented as IE. The uplink latency of 

xk is defined as: 
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1

n
k

CE k k

i k

vs
IE dvs

vs


   (11) 

 

In Eq. (11), P(vsk) is the probability density function 

of transfer rate vsk and computed as: 
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In Eq. (12), k denotes the bandwidth parameter of the 

kernel utilized provided as 

0.2
4

3
k k

x
 

 
  

 
 where k refers 

to the predicted standard variance of the edge node vk. 

Power Utilization Limits  

Due to the resource-limited behaviour of edge 

computing, the power of every device is typically 

constrained. The power use of the edge device comprises 

stationary energy use and computational power use of the 

task. The fixed energy use is computed by the 

computational period of the study as: 
 

,

, ,

j

i kS

i k i k k

i

t
E e dx   (13) 

 

In Eq. (13), ei,k is the unit period power use of vj in 

( , ), j

k i kx St  is the computation capacity of vj in xk and Fi is 

the computation speed of vj. Additionally, the 

computational power use is determined as: 

 

, ,

Com j

i k i k iE t  (14) 

In Eq. (14), i,k is the power use of unit computation 

capacity and speed. The power use is determined as: 

 

, ,

S Com

i i k i kE E E   (15) 

 

It can reach the limit if the task power use is less than 

the highest power use E permitted by the node. Briefly, 

the jth the layer is the optimized framework that requests 

to reach the following limits: 
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In Eq. (16), 𝑍 is the total number of layers in the fuzzy 

DNN framework. This can be termed as the improved 

heuristic lion optimization. 

Lion Optimization Algorithm (LOA) 

A. Initialization 

At first, the population is arbitrarily created over the 

solution space. Each result is known as a lion (edge devices). 

In a 𝑑 -dimensional optimization dilemma, i.e., 𝑑  set of 

determining factors  ( , ) ( , ), , , ,S Com

QP EC C E i k i k highT T T E E andT , a lion 

(edge devices) is denoted as: 

 

 1(  ) , , dLion edge devices l l   (18) 

 
The fitness range of every edge device (lion) is 

determined by assessing the objective function given in 

(16) as: 
 

   1 , , df edge device f l l   (19) 

 

In the primary stage, dpop solutions are created arbitrarily 

in exploring space, % d of completed results are arbitrarily 

selected as migrant edge devices. The remaining population 

is randomly split into  pride. Each solution comprised a 

specified gender and stayed stable in the optimization task. 

During the searching task, each lion observes its most 

excellent entered site. Depending on such observed sites, 

every pride’s region is created. Therefore, for every pride, 

observed sites (most excellent entered sites) generate that 

pride’s region through its members. 
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B. Hunting 

In all pride, few females focus on a prey optimal set of 

 ( , ) ( , ), , , ,S Com

QP EC C E i k i k highT T T E E andT  in a crowd for offering 

food for their pride. Such seekers include particular 

policies for encircling the prey and holding it. Normally, 

edge devices pursue roughly similar models while 

hunting. During hunting, every lion adjusts its site 

depending on its site and group members' locations. 

Because of this concept that during hunting, few such 

seekers encircle prey and attack from the opposite side, 

opponent-based training is utilized. 

Based on this concept, the seekers are randomly split 

into three subgroups. The group with the maximum 

collective members’ fitness is termed a centroid and the 

other two groups are termed “two wings”. A fake prey 

(prey)  is taken in the centroid of seekers as: 

 

  1, , /   dprey hunters l l number of hunters 
 

 
During hunting, seekers are suddenly chosen one after 

the other. Every elected seeker attacks fake prey, 

following the crowd that the elected lion belongs to. If a 

seeker enhances its fitness, 𝑝𝑟𝑒𝑦  can escape from the 

seeker and fresh site of prey(prey') is found as: 
 

   ' 0,1prey prey rand PI prey hunter      (20) 

 
In Eq. (20), prey denotes the current site of prey, 

ℎ𝑢𝑛𝑡𝑒𝑟 indicates the current site seeker who hit to target 

and 𝑃𝐼 represents the rate of increase in the objective of 

the seeker. To mimic encircling prey by selected hunter 

groups, the fresh locations of hunters (hunters') which are 

belonging to both left and right wings are created as: 
 

    

    
'

2 , , 2

, 2 , 2

rand prey hunter prey prey hunter prey
hunter

rand prey prey hunter prey hunter prey

     
 

    

 (21) 

 
Additionally, the new locations of centroid hunters are 

created as: 
 

 

 
'

, ,

, ,

rand hunter prey hunter prey
hunter

rand prey hunter hunter prey

 
 


 (22) 

 
In Eq. (21) and (22), rand(a, b) produces a random 

number between 𝑎  and 𝑏  which are upper and lower 

limits, accordingly. 

C. Shifting Towards Secure Site 

The new site for a female lion is defined as: 
 

    

      

'  2

0,1 1 1,1 tan tan

2 1 . 2 0, 2 1

femalelion female lion Dist

rand R U Dist

R R R R



  

    

 

 (23) 

In Eq. (23), female lion denotes the current site of the 

female lion, Dist indicates the gap between the female 

lion’s site and the decided spot selected by event choice 

among the pride’s region, {R1} denotes the vector which 

its starting spot is the past position of the female lion and 

its direction is toward the elected site, {R2} denotes the 

perpendicular to {R1}. 

The success of a lion is defined when it enhances its 

most excellent site at the final iteration of the lion 

optimizer. In crowd , the success of lion i at iteration t is 

described as: 

 

 
1

, ,

1

, ,

1,   
, ,

0,   

t t

i i

t t

i i

most excellent most excellent
uccess i t

most excellent most excellent

 

 






 
 



 (24) 

 

In Eq. (24), ,

t

imost excellent  indicates the most excellent 

site obtained by lion i at t. The maximum number of 

successes means that the lions have converged on a 

remote spot from the optimal spot. Likewise, the 

minimum amount of success indicates that the lions are 

swinging around the best result with no considerable 

enhancement. Therefore, this factor is applied as a 

valuable element for the event range. By utilizing the 

success ranges, Kj(sc) is determined as: 

 

   
1

, , , 1, ,
n

j

i

K sc Success i t j 


    (25) 

 

In Eq. (25), n denotes the quantity of lion in pride and 

Kj(sc) indicates the quantity of lion in pride j which achieves 

an enhancement in their objective in the final iteration. 

Therefore, the event range for every pride is dynamic in each 

iteration. It indicates that while the success range is reduced, 

the event range is maximized, resulting in high diversity. So, 

the tournament range is determined as: 

 

 
max max 2, , 1, ,

2

jrange

j

K sc
T ceil j 

  
      

  

 (26) 

 

D. Roaming 

Every male lion in a pride roams in that pride’s region 

because of a few causes. To imitate this nature of 

inhabitant males, %R of pride region are chosen arbitrarily 

and are entered by that lion. Including roaming, if the 

inhabitant male enters a new site that is healthier than its 

present most excellent site, his most excellent entered result 

is updated. This roaming is a robust local exploration and 

supports the lion optimizer for exploring an approximate 

solution to enhance it. To randomly explore solution space 

and prevent trapping in local optima, nomad lions and their 

dynamic roaming are considered. 

So, the new site of nomad lions is created as: 
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'
,

,  

ij j i

ij

j

lion ifrand
lion

RAND Or else

 
 


 (27) 

 

In Eq. (27), lionij denotes the current site of ith nomad lion 

and jth range, randj refers to an arbitrary standard number 

between 0 and 1, 𝑅𝐴𝑁𝐷  denotes the randomly created 

vector in search space and Pi stands for the probability which 

is determined for every nomad lion separately as: 

 

  
0.1 min min 0.5, ,

 

1, , .   

i nomad

i

nomad

nomad most excellent

most excellent

i no of nomad lions

  
    

 

 

 (28) 

 

In Eq. (28), nomadi and mostexcellentnomad are the 

objective functions of the current site of the ith lion in 

nomads and the most excellent objective function of the 

nomad lion, accordingly. 

E. Mating 

It is a crucial task that guarantees the lion’s survival 

and offers a chance for data transfer among members. In 

each pride, %Ma of female lions is mating with single or 

various inhabitant males. For generating offspring, such 

males are chosen at random from the same pride as the 

females. For nomad lions, it is varied that a nomad 

female only mates with one of the males, which are 

chosen arbitrarily. 

The mating function is a linear mixture of parents to 

generate two fresh offspring. So, the new cubs are developed 

after choosing the female lion and males for mating as: 

 

 

1

1  

1
 

j j

i

j iNR

ii

off spring female lion

male lion Success
Success







  


 



 (29) 

 

 

 

1

2 1  

 

j j

i

j iNR

ii

offspring female lion

male lion Success
Success







  

  


 (30) 

 

In Eq. (29) and (30), Successi is 1 when male i is 

chosen for mating; or else, it is 0, NR denotes the number 

of inhabitant males in a pride,  represents the arbitrarily 

created integer with uniform distribution with average 

value 0.5 and standard variance 0.1. One of 2 new 

offspring is chosen as male and another as a female in a 

random manner. A mutation is performed on every 

chromosome of one of the created offspring with the 

possibility (%Mu). A random integer swaps the 

chromosome range. Through mating, the lion optimizer 

distributes data between genders if fresh cubs inherit 

behaviour from both genders. 

F. Defence 

Nomad male lions attack prides randomly for fighting 

with other males in their pride. If the nomad lion is 

sufficiently powerful, the weakest male lion is rejected from 

the pride and is termed as a nomad by both genders. 

G. Migration 

In every pride, the highest quantity of females is 

computed by % of pride populace. For migration 

function, a few females decided arbitrarily and turned into 

nomads. The number of migrated females in every pride 

is identical to the sum of excess females in every pride 

and % I of the highest quantity number of females in a 

pride. If decided, females migrate from pride and become 

nomads. Fresh nomad females and previous nomad 

females are ranked based on their objectives. After, the 

most excellent females are chosen arbitrarily and 

circulated to pride to satisfy the unfilled site of migrated 

females. It preserves the diversity of the entire populace 

and distributes data among pride. 

H. Lion’s Population Equilibrium 

Because there is constant equilibrium in the lion’s 

populace, the number of lions must be controlled at the 

end of every iteration. So, the nomad lions with the 

minimum objective value are rejected depending on the 

highest allowed number of every gender in nomads. So, 

this process is continued until the stopping criterion is 

reached, i.e., the optimal set of , ,, , , ,S Com

QP EC CE i k i kE E  and 

𝒯high is obtained for a set of edge nodes to execute the 

fuzzy DNN framework. Based on this set of factors 

obtained for edge nodes, the cloud server decides which 

task will be executed at the edge device or cloud nodes. If 

the optimal set of factors satisfies the edge node’s 

constraints for task execution, the cloud executes the task 

at the particular edge node. Otherwise, the task will be 

performed at the cloud node itself: 
 

Algorithm: 

Input: Different set of factors 

        , , 0, , , , , , , , , , , , , , , , , , ,i i i i i k k H i k i ks k o a t vs e n k i E  
; 

Output: Optimal set of factors for edge devices 

Begin 

i1; j 1; 𝒮tj 0; 𝒟tj 0; 

while (i <N) 

Compute𝒜i
2Pmi, Mapi, 𝒮i and𝒟I; 

 ii + 1; 

 while (jN) 

 𝒟tj 𝒟tj-1 + 𝒟I; 

 𝒮tj𝒮tj-1 + 𝒮i; 

 Compute , ,, , , ,S Com

QP EC CE i k i kE E  and 𝒯high; 

 Initialize the number of lions (edge devices) and 
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iterations; 

Create an arbitrary result for every lion; 

 Assign pride and nomad lions; 

 while (t< max iteration) 

 for (every pride) 

A few females are chosen at random to hunt; 

The rest of the females travel toward the most excellent 

sites in the region; 

Every male roam in %R of the region; 

%Ma of female’s mate with only one inhabitant males; 

The weakest male is rejected by pride and turns into a 

nomad; 

for (every nomad lion) 

Males and females travel arbitrary distances in exploring 

space; 

%Ma of female’s mate with only one male; 

Nomad males hit pride; 

 for (every pride) 

%I of females immigrate from pride and turn into nomads; 

Each nomad lion gender is ranked based on its objective 

range; 

Most excellent females are chosen and circulated to pride, 

satisfying empty sites; 

Nomad lions with the minimum objective content will be 

rejected depending on the highest allowed quantity of 

every gender; 

 end for  

 end for 

 end for 

 end while 

Obtain the optimal set of , ,, , , ,S Com

QP EC CE i k i kE E  and 𝒯ℎ𝑖𝑔ℎ 

for edge devices; 

Cloud decides which tasks will be carried out at the edge 

devices; 

 end while 

end while 

End 

 

Experimental Results 

In this section, the performance of task execution 

decisions using LOA for load-balancing in the cloud-edge 

computing paradigm is compared with the ACO (Xian-Jia, 

2015) in terms of energy use and latency. An experiment 

is implemented in JAVA to analyze the efficiency of the 

cooperative cloud-edge computing paradigm. To simulate 

the complex scenario in the IoT, 25 edge devices are 

considered. The experiment is performed using the 

Melanoma image dataset which includes both images and 

metadata. The metadata for all images includes image 

name, patient id, gender, approximate patient age at the 

period of imaging, location of the imaged site, diagnosis 

information, an indicator of malignancy of imaged lesion 

and binarized version of the target variable (either benign 

or malignant). From this dataset, 5680 data are considered 

for training and 1078 data are considered for testing. 

Also, classifying medical data using a fuzzy DNN 

classifier is analyzed in precision, recall and accuracy, 

compared with the ML (Ghosh and Grolinger, 2019) on 

disease classification. 

Dataset Format 

The considered dataset is accessible in 2 formats. 

The first is the file format defined in the DICOM 

standard. The DICOM file format is a mixture of the 

metadata and pixel data in a single file. The pixel data 

is encoded in JPEG format. The second format is where 

the images are in JPEG format and the metadata is 

added in a linked CSV file. 

Energy Use 

It is defined as the amount of energy consumed by the 

edge devices for task execution. 

Figure 3 demonstrates the comparative efficiency of 

ACO and LOA-based task execution optimization in terms 

of energy use. It is identified that the proposed LOA-

based task execution optimization for load-balancing in 

a cloud-edge computing system outperforms the ACO 

algorithm because it addresses a reduction of 12.7% in 

energy use for 25 edge devices in a network compared 

to the ACO algorithm. 

Latency  

It is the time taken by the edge nodes to successfully 

execute the tasks. 

Fig. 4 depicts the comparative efficiency of ACO and 

LOA-based task execution optimization in terms of 

latency. The LOA-based task execution optimization for 

load-balancing in a cloud-edge computing system 

achieves less latency than the ACO algorithm since it 

views a decrease of 32.1% in latency for 25 edge devices 

compared to the ACO algorithm.  

 

 

 

Fig. 3: Comparison of energy consumption 
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Fig. 4: Comparison of energy latency 

 

Analysis of Classification Performance 

Accuracy 

The fraction of proper classification of diseased 

patients over the overall number of trails executed is 

called accuracy: 

 

TP TN
Accuracy

TP TN FP FN




    
 

True Positive (TP) gives a result where the fuzzy 

DNN/ML properly classifies the diseased patients as itself. 

False Positive (FP) results in the fuzzy DNN/ML improperly 

classifying the diseased patients as healthy patients. 

False Negative (FN) results in the fuzzy DNN/ML 

improperly classifying healthy patients as diseased patients. 

True Negative (TN) gives a result where the fuzzy 

DNN/ML correctly classifies the healthy patients as itself. 

Precision 

The number of exactly classified diseased patients at 

TP and FP rates is known as precision: 
 

TP
Precision

TP FP


  
 

Recall 

The number of correctly classified diseased patients at 

TP and FN rates is known as recall: 
 

TP
Recall

TP FN


  
 

F-measure 

The harmonic average of precision and recall is called 

f-measure: 
 

2
Precision Recall

F measure
Precision Recall

  


C

 

Fig. 5 - 8 displays the comparative efficiencies of ML 

and fuzzy DNN classifiers in terms of precision, recall, f-

measure and accuracy when increasing the number of 

images. It observes that the fuzzy DNN achieves 85.8% 

accuracy, 87.2% precision, 84.7% recall and 85.9% f-

measure whereas the ML has 76.6% accuracy, 79.1% 

precision, 78.5% recall and 78.8% f-measure when 

considering 200 images. Thus, it concludes that the fuzzy 

DNN can effectively classify the medical data compared 

to the ML. 

 

 

 
Fig. 5: Comparison of precision for ML and fuzzy DNN classifier 

 

 

 

Fig. 6: Comparison of Recall for ML and Fuzzy DNN Classifier 

 

 
 
Fig. 7: Comparison of f-measure for ML and fuzzy DNN classifier 
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Fig. 8: Comparison of accuracy for ML and fuzzy DNN classifier 

 

Conclusion 

In this article, a cooperative cloud-edge computing 

structure was presented by allowing how to 

successfully execute the fuzzy DNN classifier into the 

edge devices to control the computationally complex 

tasks of DNNs. Primarily, the edge devices were built 

with fuzzy DNNs via assessing the computational 

intensity and latency. Afterwards, the cloud servers 

collaborated with the edge devices to produce the 

cooperative cloud-edge computing model. Besides, an 

adaptive deployment technique was adopted to 

guarantee the load-balancing of edge devices with the 

help of LOA. According to this optimization solution, 

the cloud server can choose which task will be 

performed at the edge devices. To conclude, the 

findings demonstrated that the proposed algorithm 

achieves a better efficiency than the conventional 

algorithms. It realizes that the fuzzy DNN classifies the 

medical data accurately than the ML since it notices an 

improvement of 12% accuracy, 10.2% precision, 7.9% 

in recall and 9% F-measure while compared to the ML 

classifier. However, it considers only traffic-associated 

attributes which are not able to improve the load-

balancing effectively. Hence, future work will focus on 

considering network structure characteristics to 

enhance load-balancing in cloud-edge computing. 

Acknowledgement 

We thank everybody who supported us to improve 

this research. 

Author’s Contributions 

S. S. Saranya: The inportant contribution are 

experimental design data analysis, intapertation and 

witing of the paper. 

N. Sabiyath Fatima: Verifies the contributed, data 

also verifies flow of the manuscript. 

Ethics 

We testify that this research paper submitted to the 

Journal of Science Publication has not been published 

in entire or in part elsewhere. 

This research project was conducted in full compliance 

with the research ethics norms of SRM Institute of Science 

and Technology, SRM University - Tamilnadu. 

References 

Adi, E., Anwar, A., Baig, Z., & Zeadally, S. (2020). Machine 
learning and data analytics for the IoT. Neural 
Computing and Applications, 32(20), 16205-16233. 
https://link.springer.com/article/10.1007/s00521-
020-04874-y 

Alabdulatif, A., Khalil, I., Kumarage, H., Zomaya, A. Y., & 
Yi, X. (2019). Privacy-preserving anomaly detection in 
the cloud for quality assured decision-making in smart 
cities. Journal of Parallel and Distributed Computing, 
127, 209-223. doi.org/10.1016/j.jpdc.2017.12.011 

Ali, F., El-Sappagh, S., Islam, S. R., Kwak, D., Ali, A., 
Imran, M., & Kwak, K. S. (2020). A smart healthcare 
monitoring system for heart disease prediction based on 
ensemble deep learning and feature fusion. Information 
Fusion, 63, 208-222.  

 doi.org/10.1016/j.inffus.2020.06.008 
Asadi, S., Nilashi, M., Husin, A. R. C., & Yadegaridehkordi, 

E. (2017). Customers perspectives on adoption of cloud 
computing in banking sector. Information Technology 
and Management, 18(4), 305-330.  

 https://link.springer.com/article/10.1007/s10799-016-
0270-8 

Bhatia, M., Kaur, S., Sood, S. K., & Behal, V. (2020). 
Internet of things-inspired healthcare system for 
urine-based diabetes prediction. Artificial 
Intelligence in Medicine, 107, 101913.  

 doi.org/10.1016/j.artmed.2020.101913 
Botta, A., De Donato, W., Persico, V., & Pescapé, A. 

(2016). Integration of cloud computing and internet 
of things: a survey. Future Generation Computer 
Systems, 56, 684-700.  

 https://doi.org/10.1016/j.future.2015.09.021 
Chauhan, D., Kumar, A., Bedi, P., Athavale, V. A., 

Veeraiah, D., & Pratap, B. R. (2021). An effective 
face recognition system based on cloud based IoT 
with a deep learning model. Microprocessors and 
Microsystems, 81, 103726. 

 doi.org/10.1016/j.micpro.2020.103726 
Dang, L. M., Piran, M., Han, D., Min, K., & Moon, H. 

(2019). A survey on internet of things and cloud 
computing for healthcare. Electronics, 8(7), 768. 

 doi.org/10.3390/electronics8070768 
Ding, S., Li, L., Li, Z., Wang, H., & Zhang, Y. (2019). 

Smart electronic gastroscope system using a cloud–

edge collaborative framework. Future Generation 

Computer Systems, 100, 395-407. 

 doi.org/10.1016/j.future.2019.04.031 

https://doi.org/10.1016/j.jpdc.2017.12.011
https://doi.org/10.1016/j.inffus.2020.06.008
https://doi.org/10.1016/j.artmed.2020.101913
https://doi.org/10.1016/j.future.2015.09.021
https://doi.org/10.1016/j.micpro.2020.103726
https://doi.org/10.3390/electronics8070768
https://doi.org/10.1016/j.future.2019.04.031


S. S. Saranya and N. Sabiyath Fatima / Journal of Computer Science 2021, 17 (11): 1116.1127 

DOI: 10.3844/jcssp.2021.1116.1127 

 

1127 

Fraga-Lamas, P., Fernández-Caramés, T. M., Suárez-

Albela, M., Castedo, L., & González-López, M. 

(2016). A review on internet of things for defense and 

public safety. Sensors, 16(10), 1644. 

 doi.org/10.3390/s16101644 

Ghosh, A. M., & Grolinger, K. (2019, May). Deep 

learning: edge-cloud data analytics for iot. In 2019 

IEEE Canadian Conference of Electrical and 

Computer Engineering (CCECE) (pp. 1-7). IEEE. 

 doi.org/10.1109/CCECE.2019.8861806 

Gokhale, P., Bhat, O., & Bhat, S. (2018). Introduction to 

IOT. International Advanced Research Journal in 

Science, Engineering and Technology, 5(1), 41-44. 

https://www.researchgate.net/profile/Omkar-

Bhat/publication/330114646_Introduction_to_IOT/li

nks/5c2e31cf299bf12be3ab21eb/Introduction-to-

IOT.pdf 

Hassan, R., Qamar, F., Hasan, M. K., Aman, A. H. M., & 

Ahmed, A. S. (2020). Internet of things and its 

applications: a comprehensive survey. Symmetry, 

12(10), 1674. doi.org/10.3390/sym12101674 

Jayaram, R., & Prabakaran, S. (2020). Onboard disease 

prediction and rehabilitation monitoring on secure 

edge-cloud integrated privacy preserving healthcare 

system. Egyptian Informatics Journal. 

 doi.org/10.1016/j.eij.2020.12.003 

Kaur, C. (2020). The cloud computing and internet of things 

(IoT). Int. J. Sci. Res. Sci. Eng. Technol, 19-22. 

doi.org/10.32628/IJSRSET196657 

Lakshmanaprabu, S. K., Mohanty, S. N., 

Krishnamoorthy, S., Uthayakumar, J., & Shankar, K. 

(2019). Online clinical decision support system using 

optimal deep neural networks. Applied Soft 

Computing, 81, 105487. 

 doi.org/10.1016/j.asoc.2019.105487 

Lei, J., Liu, J., & Li, W. (2021). Hospital information 

systems in developing countries: a state-of-the-art 

systematic review. Kybernetes. 

 https://www.emerald.com/insight/content/doi/10.11

08/K-09-2020-0590/full/html 

Liu, Y., Zhang, L., Yang, Y., Zhou, L., Ren, L., Wang, F., 

... & Deen, M. J. (2019). A novel cloud-based 

framework for the elderly healthcare services using 

digital twin. IEEE Access, 7, 49088-49101. 

doi.org/10.1109/ACCESS.2019.2909828 

 

 

 

 

 

 

 

 

 

 

Mahdavinejad, M. S., Rezvan, M., Barekatain, M., Adibi, P., 

Barnaghi, P., & Sheth, A. P. (2018). Machine learning 

for internet of things data analysis: a survey. Digital 

Communications and Networks, 4(3), 161-175. 

doi.org/10.1016/j.dcan.2017.10.002 

Samuel, O. W., Asogbon, G. M., Sangaiah, A. K., Fang, P., 

& Li, G. (2017). An integrated decision support system 

based on ANN and Fuzzy_AHP for heart failure risk 

prediction. Expert Systems with Applications, 68, 

163-172. doi.org/10.1016/j.eswa.2016.10.020 

Saranya, S. S., & Fatima, N. S. (2020). Context aware data 

fusion on massive IOT data in dynamic IOT analytics. 

Webology, 17(2). 

 doi.org/:10.14704/WEB/V17I2/WEB17080 

Shah, S. A., Seker, D. Z., Rathore, M. M., Hameed, S., 

Yahia, S. B., & Draheim, D. (2019). Towards disaster 

resilient smart cities: can internet of things and big 

data analytics be the game changers?. IEEE 

Access, 7, 91885-91903.  

 doi.org/10.1109/ACCESS.2019.2928233 

Tuli, S., Basumatary, N., Gill, S. S., Kahani, M., Arya, R. 

C., Wander, G. S., & Buyya, R. (2020). HealthFog: 

An ensemble deep learning based smart healthcare 

system for automatic diagnosis of heart diseases in 

integrated IoT and fog computing environments. 

Future Generation Computer Systems, 104, 187-200. 

 doi.org/10.1016/j.future.2019.10.043 

Xian-Jia, R. (2015, July). Research on hybrid task 

scheduling algorithm simulation of ant colony 

algorithm and simulated annealing algorithm in 

virtual environment. In 2015 10th International 

Conference on Computer Science & Education 

(ICCSE) (pp. 562-565). IEEE. 

 doi.org/10.1109/ICCSE.2015.7250310 

Yazdani, M., & Jolai, F. (2016). Lion optimization 

algorithm (LOA): A nature-inspired metaheuristic 

algorithm. Journal of Computational Design and 

Engineering, 3(1), 24-36. 

Zhang, C., Zhu, L., Xu, C., & Lu, R. (2018). PPDP: An 

efficient and privacy-preserving disease prediction 

scheme in cloud-based e-Healthcare system. Future 

Generation Computer Systems, 79, 16-25. 

doi.org/10.1016/j.future.2017.09.002 

https://doi.org/10.3390/s16101644
https://doi.org/10.1109/CCECE.2019.8861806
https://www.researchgate.net/profile/Omkar-Bhat/publication/330114646_Introduction_to_IOT/links/5c2e31cf299bf12be3ab21eb/Introduction-to-IOT.pdf
https://www.researchgate.net/profile/Omkar-Bhat/publication/330114646_Introduction_to_IOT/links/5c2e31cf299bf12be3ab21eb/Introduction-to-IOT.pdf
https://www.researchgate.net/profile/Omkar-Bhat/publication/330114646_Introduction_to_IOT/links/5c2e31cf299bf12be3ab21eb/Introduction-to-IOT.pdf
https://www.researchgate.net/profile/Omkar-Bhat/publication/330114646_Introduction_to_IOT/links/5c2e31cf299bf12be3ab21eb/Introduction-to-IOT.pdf
https://doi.org/10.3390/sym12101674
https://doi.org/10.1016/j.eij.2020.12.003
https://doi.org/10.1016/j.asoc.2019.105487
https://doi.org/10.1109/ACCESS.2019.2909828
https://doi.org/10.1016/j.dcan.2017.10.002
https://doi.org/10.1016/j.eswa.2016.10.020
https://doi.org/10.1109/ACCESS.2019.2928233
https://doi.org/10.1016/j.future.2019.10.043
https://doi.org/10.1109/ICCSE.2015.7250310
https://doi.org/10.1016/j.future.2017.09.002

