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ABSTRACT 

Proportional Integral Derivative (PID) controllers are widely used in industrial processes for their simplicity 
and robustness. The main application problems are the tuning of PID parameters to obtain good settling 
time, rise time and overshoot. The challenge is to improve the timing parameters to achieve optimal control 
performances. Remarkable findings are obtained through the use of Artificial Intelligence techniques as 
Fuzzy Logic, Genetic Algorithms and Neural Networks. The combination of these theories can give good 
results in terms of settling time, rise time and overshoot. In this study, suitable controllers able of improving 
timing performance of second order plants are proposed. The results show that the PID controller has good 
overshoot values and shows optimal robustness. The genetic-fuzzy controller gives a good value of settling 
time and a very good overshoot value. The neural-fuzzy controller gives the best timing parameters 
improving the control performances of the others two approaches. Further improvements are achieved 
designing a real-time optimization algorithm which works on a genetic-neuro-fuzzy controller. 
 
Keywords: PID Controllers, Fuzzy Logic, Genetic Algorithms, Second Order Plants, Neural Networks 

1. INTRODUCTION 

The quality of control in a system depends on settling 
time, rise time and overshoot values. The main problem is 
to optimally reduce such timing parameters, avoiding 
undesirable overshoot, longer settling times and vibrations. 
To solve this problem, many authors have proposed 
different approaches. A first approach is the Proportional 
Integral Derivative (PID) controllers application. They are 
extensively used in industrial process control application. 
Vaishnav and Khan (2007) designed a Ziegler-Nichols PID 
controller higher order systems. A tuning method which 
uses PID controller has been developed (Shamusuzzoha and 
Skogestad, 2010). Such method requires one closed-loop 
step setpoint response experiment similar to the classical 
Ziegler-Nichols experiment. However, in complex systems 
characterized by nonlinearity, large delay and time-
variance, the PID’s are of no effect (Cao et al., 2008). The 
design of a PID controller is generally based on the 
assumption of exact knowledge about the system. Because 
the knowledge is not available for the majority of systems, 
many advanced control methods have been introduced. 

Some of these methods make use of the fuzzy logic 
which simplifies the control designing for complex 
models. As an example Kumar and Garg (2004) 
designed a fuzzy controller to control a single link 
manipulator robot. Moreover, a gain tuning fuzzy 
controller has been designed to monitor the track 
seeking in optical disks (Huang and Su, 2007). In 
order to improve the control precision of a ball mill 
circuit, a fuzzy interpolation algorithm is presented 
(Cao et al., 2008). Moreover, PID fuzzy controllers 
can be designed as power system stabilizer (Corcau and 
Stoenescu, 2007). 

The design of a fuzzy controller depends on the 

choice of membership functions. A natural choice 
through trial and errors procedures is impossible to 

obtain, overall for complex systems. In these situations, a 

huge computational time is necessary. In order to 
overcome such difficulty, Genetic Algorithms (GA) are 

applied to fuzzy controllers with good results (Khan et al., 
2008; Kumar and Garg, 2004; Chegeni et al., 2007; 

Pelusi, 2011c). Such genetic methods are useful 
approaches for problems that require efficient searching. 
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Khan et al. (2008) the membership functions and the 

fuzzy logic rules were optimized through Genetic 
Algorithms methods for a temperature control system. 

Thanks to GA, Leng et al. (2006) eliminated the 

limitation on symmetric membership functions and 
symmetric fuzzy rules. To achieve better control 

performances of complex systems, neuro-fuzzy 
techniques are developed. These two techniques match 

the capability of modelling a problem using the 

knowledge with the capability to learn from data. A 
neural-fuzzy network can self-adjust the parameters of 

rule base using neural-network-based learning algorithms. 
In the literature, a datadriven adaptive neuro-fuzzy 

controller has been designed for the water-level control of 
U-tube steam generators in nuclear power plants 

(Munasinghe et al., 2005). Moreover, in (Allaoua et al., 

2009) a neuro-fuzzy controller has been designed to 
control the DC motor speed. 

Many authors have proposed suitable combinations 
of fuzzy, genetic and neural techniques for different 
applications (Leng et al., 2006; Saridakis et al., 2006; 
Cho, 2002). In this way, hybrid intelligent algorithms 
have been developed. For example, a hybrid algorithm 
based on a genetic algorithm to design a neuro-fuzzy 
network is proposed in (Leng et al., 2006). In such work, 
the model has been built for a system without a priori 
knowledge about the partitions of input space and the 
number of fuzzy rules. Akbarzadeh et al. (2000) hybrid 
paradigms are successfully implemented to solve three 
prominent robot control issues. Handwritten digit 
recognition can be solved through combining methods of 
neural networks (Cho, 2002). The proposed hybrid 
method uses some fuzzy concepts to combine the outputs 
of separate networks which relevance is assigned by GA. 
Good solution for real-time crack identification systems 
is described in (Saridakis et al., 2006). In this work, the 
analytical model is approximated with a neural network 
which is used to solve the inverse problem of the crack 
identification. A genetic search method produces values 
for the crack attributes as input arguments to the neural 
network and the genetic algorithm objective function 
relies on a fuzzy logic representation. Recent studies 
(Pelusi, 2011a; 2011b; 2012) have proposed genetic-
neuro-fuzzy techniques able to improve the timing 
performances of second order control systems. 

The aim of this study is to achieve an optimal control 
performance of industrial actuators designing suitable 
controllers. Four research guidelines are considered. The 
first one regards the design of a PID controller based on 
Ziegler-Nichols tuning formula (Xue et al., 2007). 
Ziegler and Nichols presented two methods: the step 
response method and the frequency response method 

(Astrom and Hagglund, 2004). The first method is 
presented in this work and it is applied to three different 
plants. Our second approach attempts of improving the 
PID timing results designing a fuzzy controller 
optimized through GA techniques. The optimization is 
initially made on membership functions only, 
subsequently, with the same genetic procedure, is made 
on fuzzy rules. The design of a suitable neuro-fuzzy 
controller which improves the performances of genetic-
fuzzy controller is the third approach of our model. To 
further improve the settling time and rise time values, a 
suitable real-time optimization algorithm is designed. Such 
algorithm works on a suitable genetic-neuro-fuzzy 
controller. The target of these different approaches is also to 
improve the simulation results shown in (Khan et al., 2008). 

1.1. Tuning Parameters of PID Controller 

The PID controllers have a wide range of applications in 
industrial control because of their simple control structure. 
The PID controllers need of less plant information than a 
complete mathematical model. In this way, the controller 
parameters can be adjusted with a minimum of effort. 
One survey of Desborough and Miller (2002) indicates 
that more than 97% of regulatory controllers utilize 
the PID algorithm. 

There are many versions of a PID controller. In this 

study, we consider a controller described by Equation (1): 
 

t

p d
0

i

1 de(t)
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∫  (1) 

 
where, u(t) is the input signal sent to the plant model, e(t) 

= r(t)-y(t) the error, y(t) the output and r(t) is the 

reference input signal. The parameters Kp, Ti and Td are 

the tuning parameters. There are more ways to obtain the 

tuning values of Kp, Ti and Td: our PID controller uses 

the Ziegler-Nichols tuning formula. The tuning formula 

is obtained when the plant model is given by a first-order 

plus dead time which can be expressed by Equation 2: 
 

sL
k

G(s)
1 sT

−
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A huge variety of plants can be approximately 

modeled by (2). If the system model cannot be physically 
derived, experiments can be performed to extract the 
parameters for the approximate model (2). For instance, 
if the step response of the plant model can be measured 
through an experiment, the output signal can be recorded 
and the parameters k, L and T (or a, where a = kL= T) can 
be extracted (Xue et al., 2007). The proposed PID 
controller is designed to control some second order control 
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systems. In order to verify the robustness of the model, we 
consider three plants with different transfer functions. The 
first one is typically used to approximate the working of 
DC motors (Khan et al., 2008) and has the form Equation 3: 
 

1 2

2
G (s)

s 12s 24
=

+ +
 (3) 

 
The second transfer function (Equation 2) is used for 

processes with first order dynamics with time delay 

Equation 4 (Amini, 2008): 
 

2

1
G (s)

(1 s)(1 5s)
=

+ +
 (4) 

 
The third transfer function (Equation 5) is joined to 

the attempts of many researches of improving the 
tuning parameters through intelligent techniques 
(Meza et al., 2009): 
 

3 2

400
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(s 50s)
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+
 (5) 

 
The Fig. 1 shows the block diagram of PID controller. 

The difference between the step and the output feedback is 

passed as input into PID controller block. Such block 

contains MATLAB functions which implement the 

Ziegler-Nichols tuning formulas (Xue et al., 2007).  

The output of the PID controller block serves as an input 

to the transfer function block. We consider the PID 

controller behavioral for different plants defined by (3), (4) 

and (5) whereas the intelligent controllers are designed only 

for second order plants with transfer function (3). 

1.2. Design of Genetic-Fuzzy Controller 

In order to improve the timing performances of designed 

PID controller, suitable genetic procedures are used. 

Generally, the first step to design a fuzzy system is 
the choice of the number of input/output membership 
functions. Assuming all possible rules are used (which is 
often the case), if the membership functions number 
increasing, then the number of rules grows 
exponentially. It needs to avoid this situation because it 
is very important trying to minimize the time to compute 
the fuzzy controller outputs given some inputs. Some 
studies (Chopra et al., 2005) deal with the design of 
fuzzy logic controllers with less number of rules leading 
to a smaller amount of computational time. The designed 
fuzzy controller has two inputs: the error e, that is the 
difference between the reference value and the output of 
controller and the change in error de, that is the 
difference between the error at time t and that one at t-1. 

These inputs have seven membership functions: 
Negative Big (NB), Negative Medium (NM), Negative 
Small (NS), Zero Error (ZE), Positive Small (PS), Positive 
Medium (PM), Positive Big (PB). The fuzzy output has the 
same membership functions of fuzzy inputs. Analyzing the 
findings of (Chopra et al., 2005), we define the rules of 
Table 1. During the rules designing process, we have 
discovered that increasing the fuzzy rules beyond 49 rules is 
useless. In fact, this procedure increases the complexity of 
fuzzy logic controller and has no positive effects on output 
response of the system. 

The Fig. 2 shows the block diagram of fuzzy 
controller. The difference e between the step and the 
output feedback is passed as an input into fuzzy logic 
controller together to the change in error de. The output 
of the fuzzy logic controller serves as an input to the 
transfer function block. The membership functions 
parameters are optimized through a search algorithm 
based on GA. This technique assures that at least a good 
local optimum can be discovered. Because GA are based 
on the survival principle of the fittest, it is necessary to 
establish a fitness function which provides a 
performance measure of tuning parameters. Such 
function can be expressed through the Equation 6 and 7: 
 
f (x) exp( x)= −  (6) 
 

Where:  
 

n
2

i 1

x e(i)
=

=∑  (7) 

 
and n is the number of iterations. In this way, the error e is 
reduced at minimum. The variables to optimize are four for 
the first and seventh membership function (trapezoidal 
functions) and three for the others five membership 
functions (triangular functions). Because there are two 
fuzzy inputs and one fuzzy output with seven membership 
functions, the number of variables to optimize is 69. 

The optimization algorithm works as follows: 

Step 1: Initialize the variables to optimize. 

Step 2: Compute randomly the slope parameters and 

establish the termination criteria. 

Step 3: If it is achieved the termination criteria, the 

genetic procedure is stopped and go to Step 6. 

Step 4: Implement the genetic operations as crossover, 

mutation and selection (Ivakpour, 2006). 

Step 5: Repeat the steps 3-4. 

Step 6: Print the optimal values of slope parameters. 
 

After 20 generations, the optimal fuzzy sets of Fig. 3-5 
are obtained. The optimized fuzzy controller uses the 
Mamdani inference method and the centroid 
defuzzification technique. 
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Fig. 1. PID controller block diagram 
 

 
 

Fig. 2. Fuzzy controller blocks diagram 
 

 
 

Fig. 3. Optimized membership functions of input e 
 

 

 

Fig. 4. Optimized membership functions of input de 
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 Fig. 5. Optimized membership functions of output 

 

Table 1. Fuzzy rules 

e\de NB NM NS ZE PS PM PB 

NB NB NB NB NM NS NS ZE 

NM NB NM NM NM NS ZE PS 

NS NB NM NS NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PS PM PB 

PM NS ZE PS PM PM PM PB 

PB ZE PS PS PM PB PB PB 
 

Many authors (Khan et al., 2008; Kumar and Garg, 
2004; Chegeni et al., 2007; Pelusi, 2011b) have proposed 
GA techniques to achieve optimal fuzzy rules. Therefore, 
the above optimization algorithm is also used to find the 
fuzzy rules with the higher weight. In fact, to improve 
the control, it is very important discovering the rules 
which give the smallest timing control parameters. For 
this task, we consider the (7) as fitness function and 
apply the described optimization algorithm. 

1.3. Neural Networks Application 

In order to improve the control performances of 

genetic-fuzzy controller, a suitable optimization of fuzzy 

rule is proposed. For this task, we consider a data-driven 

intelligent controller based on adaptive features. A 

neural-fuzzy network can self-adjust the parameters of the 

fuzzy rules using neural-based learning algorithms. Our 

idea is to tune the rules weights considering the rules that 

give good timing performances. The fuzzy rules weights are 

tuned with the constraint of achieving small values of 

settling and rise time. Our control system has self-tuning 

capabilities and requires an initial rule base (Table 1) to be 

specified prior to training. 
Generally, the design of neural networks for specific 

applications is a test and error process. This process 

sometime depends mainly on previous experience in 
similar applications. Moreover, the performances and 
the cost of a neural network are joined to neurons 
number, net architecture and learning algorithms. Some 
works (Fiszelew et al., 2007; Chad, 2005) are focused 
in the development of methods for the evolutionary 
design of architectures to search optimal configurations 
of neural networks. 

Among the main training techniques there is the back-
propagation algorithm. This training procedure is used in 
many applications (Amini, 2008; Chang and Shih, 2002). 
Back-propagation involves minimization of an error 
function which is accomplished by performing gradient 
descent search on the error surface.  

In order to define the layers number and the neurons 

number for each layer, trial and error procedures are 

used. The designed neural network has three layers: the 

first one has 2 neurons (equal to inputs number), the 

hidden layer has 7 neurons and the output layer has 49 

neurons (Fig. 6). The training technique used is back-

propagation. The network has been designed through 

Neural Network Toolbox of MATLAB. 
Difficult task is the definition of a suitable training 

set. The training sample of our neural network is 
characterized by the inputs e and de and 49 rules weights 
values. The training set is obtained as follows. The error 
e, the change in error de and the weights are randomly 
generated and sent to the genetic-fuzzy controller. The 
weights values with settling and rise time less than the 
best timing values of genetic-fuzzy controller are 
extracted. Formally Equation 8 and 9: 
 

s sbestt t<  (8) 

 
and: 
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r rbestt t<  (9) 

 
where, ts is the settling time of neural-fuzzy controller 
and tsbest is the best settling time of genetic-fuzzy 
controller, whereas tr is the rise time of neural-fuzzy 
controller and trbest is the best rise time of genetic-fuzzy 
controller. The obtained training sample of 1050 patterns 
is applied to the neural network. 

A single presentation of all input vectors to the 
network is defined as training epoch. The network is then 
updated according to the results of all the presentations. 
Training occurs until a maximum number of epochs 
occurs or the performance goal is met. After 150 epochs 
and with a goal of 0.05, the performance of neural 
network is 0.0820087 (Fig. 8). 

The block diagram of neuro-fuzzy controller is 
showed in Fig. 7. The inputs e and de are sent to the 
trained neural network which gives the optimal weights 
for the 49 fuzzy rules. Such tuning parameters are passed 
to the fuzzy controller together with the error signal e 
and the change in error de. The output of fuzzy controller 
tunes the second order plant G1(s). The difference 
between the signal reference and the output feedback is 
passed as an input to the neural network and fuzzy 
controller. The process restarts with the calculation of 
new values of the error and change in error. 

1.4. Real-Time Optimization Algorithm 

The genetic fuzzy controller works on a run time 
optimization algorithm described before. The new idea is 
to design a real-time optimization algorithm taking into 
account time computer problems. To accomplish such 
task, genetic techniques are again used. 

The intelligent procedure performs a stochastic 
search via iteratively processing populations of solutions 
in according to fitness. In control applications, the fitness 
is usually depending on performance measures as 
settling time and rise time. To design our real-time 
algorithm, we define the fitness function f as expressed 
in equation 10: 
 

1
f (x)

1 x
=

+
 (10) 

 

with 
n 2

t 1
x e(t)

=
=∑ , where n is the number of iterations. 

The goal is to reduce the quantity x at minimum, where x 

is the sum of square errors. The Fig. 9 shows the block 

diagram of control system. In order to evaluate the 

timing performance of structure, we consider the step 

response of system. The difference between the step and 

the output feedback is sent to the input of genetic-neuro-

fuzzy controller together with the change in error 

computed by change in error block. Such inputs serve as 

inputs to the trained neural network which gives the 

optimal weights of fuzzy rules. At the same time, the GA 

block gives the optimal MF scaling parameters for given 

inputs. The output of fuzzy logic controller drives the 

second order plant defined by (3). 
The novelty of this approach is the real-time 

optimization of MF and weights using respectively GA 
and NN. The steps of our real-time optimization 
algorithm are the following: 

Step 1: Initialize the MF scaling parameters. The 
number of parameters is 69. The population 
number is 100 and the number of generation is 
20. A population of problem solutions is 
expressed in the form of chromosomes, i.e., 
strings encoding problem solutions. 

Step 2: Define the range of each MF scaling parameter. 
This is a delicate phase because there could be 
undesirable overlapping. Subsequently, compute 
randomly the scaling parameters and establish 
the termination criteria. 

Step 3: When it is achieved the termination criteria, the 
intelligent procedure is stopped and go to Step 9. 

Step 4: Compute the fitness function to select good 
strings. The fitness function also defines the 
optimal weights via the trained neural network. 
The task is to achieve the maximum of f(x) 
(equation 10). 

Step 5: Implement the selection. The selection process 
copies parent chromosomes into a tentative new 
population. The number of copies reproduced for 
the next generation by an individual is expected to 
be directly proportional to its fitness value. 

Step 6: Compute the crossover. Such genetic procedure 
recombines genetic material of parent 
chromosomes to produce offspring on the basis 
of crossover probability. Let y, z be two 
chromosomes of length 5. As an example, 
considering y = 01001 and z = 11010 and 
onepoint crossover at the fourth point, two new 
chromosomes y0 = 01010 and z0 = 11001 are 
produced. 

Step 7: Implement the mutation. The mutation selects a 
random position of a random string and 
complements the bit value. For example, if 
mutation is applied to the third bit of string y0, 
the transformed string becomes 01110. 

Step 8: Repeat the steps 3-7. 
Step 9: Print the optimal values of MF scaling 

parameters and the weights of fuzzy rules. 

The real-time algorithm gives the optimized 
membership functions shown in Fig. 10-12. 
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Fig. 6. Neural network architecture 

 

 
 

Fig. 7. Neuro-fuzzy controller block diagram 

 

 
 

Fig. 8. Neural network training plot 
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Fig. 9. Genetic-Neuro-Fuzzy controller block diagram 

 

 
 

Fig. 10. Optimal membership functions of error obtained with real-time optimization algorithm 

 

 
 

Fig. 11. Optimal membership functions of change-in-error obtained with real-time optimization algorithm 
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Fig. 12. Optimal membership functions of fuzzy output obtained with real-time optimization algorithm 
 

1.5. Simulation Results 

The designed controllers are simulated through the 

MATLAB. The simulation results for different plants of 

PID controller are shown in Table 3. Our PID controller 

improves the rise time and the overshoot of (Khan et al., 

2008). In fact, the rise time of conventional PID 

controller in (Khan et al., 2008) is 0.371s, whereas the 

PID controller here designed has rise time equal to 

0.118s. Moreover, the overshoot of (Khan et al., 2008) is 

0.6748, whereas our PID controller gives a value of 

0.223. The step response of PID controller with plant 

defined by (3) is shown in Fig. 13. Moreover, the 

controller has shown good robustness performances 

changing the plant parameters. In Table 3 are shown the 

settling time, rise time and the overshoot values of 

control system for the three different plants G1(s), G2(s) 

and G3(s). The step response is respectively shown in 

Fig. 13-15. 

The genetic-fuzzy controller with optimized MF has 

better ts and tr than fuzzy logic PD controller in (Khan 

et al., 2008). In our work, the settling time is 0.699s 

versus a value of 0.8735s of fuzzy logic PD controller 

designed in (Khan et al., 2008). Comparing the results, we 

can note that the rise time has an improvement of above 

45% percent respect to (Khan et al., 2008). The genetic-

fuzzy controller also gives a settling time better than 

our PID controller (considering G1(s) as transfer 

function) and zero overshoot. The improvements can be 

deduced observing PID and genetic-fuzzy controllers 

step response (Fig.13-16). We remind that the genetic 

fuzzy, neuro-fuzzy and genetic-neuro-fuzzy controllers 

are applied on plants with transfer function defined by 

(3). 

Better timing results are achieved optimizing the 

fuzzy rules through the run-time optimization algorithm.. 

The optimization of rules weights shows that there are five 

more relevant rules (Table 4). These rules have weight 

greater than 0.9. We can note that with error e equal to 

NB and NM and for all de values, the fuzzy rules are 

characterized by weights less equal than 0.9. Moreover, 

with e = ZE there are not relevant rules. The genetic 

fuzzy controller with optimal rules improves the timing 

values of fuzzy controller with optimal membership 

functions. In fact, the settling time is 0.436s, versus the 

value of 0.699s of genetic fuzzy controller with only 

optimal membership functions. Moreover, also the 

value of tr is improved from 0.385s to 0.241s. 

Thanks to the constraints (8) and (9) defined in the 

neuro-fuzzy controller with tsbest = 0.699s and trbest = 0.385s, 

the genetic-fuzzy controller results are improved. In fact, 

the adaptive neuro fuzzy approach gives a settling time of 

0.423s and a rise time of 0.234s. The step response of 

neuro-fuzzy controller is shown in Fig. 17. 

Further improvements are achieved defining a real-

time optimization procedure. The designed genetic-neuro-

fuzzy controller works in according with the real-time 

optimization algorithm described before. Because such 

algorithm adopts Fuzzy Logic, Genetic Algorithms and 

Neural Networks techniques which run at the same time, 

computational cost must be considered. 
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Fig. 13. Step response of PID controller for G1(s) plant 
 

 
 

Fig. 14. Step response of PID controller for G2(s) plant 
 

 
 

Fig. 15. Step response of PID controller for G3(s) plant 
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Fig. 16. Step response of genetic-fuzzy controller 

 

 

 

Fig. 17. Step response of neuro-fuzzy controller 

 

We simulate our controller through the MATLAB 

software and run the optimization algorithm on a 

2.5GHz CPU speed computer. The algorithm yields the 

optimal parameters after about 10 h time computer. 

This is due to the fact that the variables to optimize are 

69 and that GA and NN work together. Moreover, the 

convergence of the algorithm depends on the amplitude 

of optimization parameters ranges. 
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Some time computer problems come from fuzzy rules 

number of the controller. Such number depends on the 

membership functions number of each fuzzy input. In 

order to increase the precision of system, a MF number 

greater than 7 has been considered. However, the 

results show that increasing the MF number do not 

improve the controller performances. The optimal 

membership functions of inputs and output are shown 

in Fig. 10-12. We can note that there are different 

slopes for each membership function. We underline that 

the first membership function and the seventh one are 

characterized by trapezoidal shape. The first 

membership function of change in error fuzzy input 

tends to assume a triangular shape rather than 

trapezoidal one (Fig. 11). From the observation of Fig. 

12, we deduce that the middle membership functions of 

output (NS, ZE, PS) are narrow. This means that near 

the zero, the output value must be evaluated more 

exactly than others output values. 

Let <e: de; o> be the fuzzy rule with e and de as 

inputs and o as output. The optimization results of the 

fuzzy rules via Neural Networks show that the more 

relevant rule, i.e., the rule with the greatest weight, is 

<PB: NS; PS>. Such rule shows a weight value equal to 

1. Viceversa, the rule <PB: ZE; PM> assumes zero 

value. Three rules have weight less than 0.504, whereas 

the other ones have weights that lie between 0.504 and 

0.777 (Table 2). 

The Fig. 18 shows the step response of the genetic-

neuro-fuzzy controller. We can note that the overshoot is 

equal to zero, therefore some results of (Khan et al., 

2008) are improved. In fact, in (Khan et al., 2008) the 

optimized fuzzy logic PD controller yields a not zero 

overshoot value. However, the main designing problem 

of the control systems is to reduce the rise time. 

Sometime, the huge reduction of the rise time causes 

high overshoot values (Khan et al., 2008). The timing 

results obtained using the real-time optimization 

algorithm are shown in Table 5, where GFC is Genetic 

Fuzzy Controller, NFC is Neuro Fuzzy Controller and 

GNFC is Genetic Neuro Fuzzy Controller. Comparing 

our results with the previous ones, we can note that there 

are improvements. In fact, our controller yields a settling 

time equal to 0.276s versus a value of 0.423s obtained 

with a run-time algorithm. Moreover, the rise time is 

reduced from 0.234s to 0.153s. Finally, the real-time 

optimization algorithm assures an improvement of 35% 

of control performances. 

The good values of settling and rise times given by 

the optimized controller in (Khan et al., 2008), are 

obtained at the expense of overshoot value. The optimized 

fuzzy logic PD controller shows a settling time equal to 

0.2526s and a rise time equal to 0.1559s with a not equal 

zero overshoot. Therefore, the other significant result of 

our research is that with zero overshoot, also settling time 

and rise time of optimized controller in (Khan et al., 2008) 

are improved (Table 5). 

Finally, by comparing the results of control 

systems performances, we conclude that the genetic-

neuro-fuzzy and neuro-fuzzy controllers produces a 

more desirable performance when compared with PID 

and genetic-fuzzy controllers. 

 
Table 2. Optimized fuzzy rules weights 

e\de NB NM NS ZE PS PM PB 

NB 0.572 0.473 0.446 0.553 0.588 0.693 0.505 

NM 0.693 0.744 0.661 0.650 0.550 0.714 0.670 

NS 0.706 0.777 0.591 0.577 0.634  0.678 0.668 

ZE 0.686 0.640 0.652 0.608 0.535 0.561 0.407 

PS 0.728 0.572 0.653 0.627 0.666 0.563 0.653 

PM 0.612 0.726 0.588 0.634 0.635 0.518 0.653 

PB 0.504 0.617 1.000 0.000 0.676 0.573 0.694 

 

Table 3. Settling time and rise time of PID controller for 

different plants 

 G1(sec) G2(sec) G3 (sec) 

ts (sec) 0.846 8.520 0.194 

tr (sec) 0.118 1.110 0.022 

Overshoot 0.223 0.251 0.369 

 

Table 4. Fuzzy rules with weight greater than 0.9 

e/de NB NM NS ZE PS PM PB 

NB NB NB NB NM NS NS ZE 

NM NB NM NM NM NS ZE PS 

NS NB NM NS NS ZE PS PM 

ZE NB NM NS ZE PS PM PB 

PS NM NS ZE PS PS PM PB 

PM NS ZE PS PM PM PM PB 

PB ZE PS PS PM PB PB PB 

 

Table 5. Timing performance of PID controller, genetic-fuzzy 

controller and neuro-fuzzy controller 

 GFC GFC NFC GNFC 

 MF-opt MF,W-opt Run-time Real-time 

ts (sec) 0.699 0.436 0.423 0.276 

tr (sec) 0.385 0.241 0.234 0.153
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Fig. 18. Step response of Genetic-Neuro-Fuzzy controller 
 

2. CONCLUSION 

Different approaches have been presented for the 

control of second order plants. The first approach 

employs a PID controller based on Ziegler-Nichols 

tuning technique to control second order systems. The 

designed PID controller gives good results in terms of 

rise time. In fact, the simulations shown a value of tr = 

0.118s. Moreover the controller has shown a good 

robustness considering the plant parameters changing. 

In order to improve the overshoot and the settling time, 

a fuzzy controller with optimized membership 

functions is designed. This optimization is 

accomplished through the application of genetic 

procedures. The genetic-fuzzy controller gives a good 

value of settling time and a very good overshoot value. 

Better results are obtained applying the optimization 

algorithm also to optimize the fuzzy rules. Another 

approach is based on the construction of data-driven 

intelligent controllers able to adjust the weights of 

fuzzy rules. This task is accomplished through the 

neural networks application. The neural-fuzzy 

controller gives good timing parameters improving the 

control performances of the others approaches. Taking 

into account the real-time optimization of membership 

functions with the best weights given by trained neural 

network, the best settling time and rise time values are 

achieved. The goodness of such results is obvious if 

settling time ts = 0.276s and rise time tr = 0.153s values 

are compared with those ones in (Khan et al., 2008). In 

other words, the simulation results show that the 

proposed approaches improve the control performance 

of conventional PID and fuzzy logic PD controllers. 

The next task will be the application of genetic-fuzzy, 

neuro-fuzzy and genetic-neuro-fuzzy controllers to 

plants defined by (4) and (5). To reduce the 

computational time for the real-time optimization, fuzzy 

rules with low weight will be identified and removed to 

make fuzzy controller more compact and transparent. 

Another task will be design a suitable training sample to 

improve the training phase of the neural network. A 

further improvement will consist of optimizing the 

weights of the neural networks through Genetic 

Algorithms. Our attempt will be improving the training 

phase to achieve optimal neural networks. 
A future challenge will be the application of the 

proposed  skills  on  simulators  for drum boiler 
(Prego and Seisdedos, 2011). 

3. REFERENCES 

Akbarzadeh, M.R.T., K. Kumbla, E. Tunstel and M. 

Jamshidi, 2000. Soft computing for autonomous 

robotic systems. Comput. Elect. Eng., 26: 5-32. 

DOI: 10.1016/S0045-7906(99)00027-0 

Allaoua, B., A Laoufi, B. Gasbaoui and A. 

Abderrahmani, 2009. Neuro-fuzzy DC motor speed 

control using particle swarm optimization. 

Department of Electrical Engineering, Bechar 

University.  



 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013 

 

196 Science Publications

 
JCS 

Amini, J., 2008. Optimum learning rate in back-

propagation n eural network for classification of 

satellite images (IRS-ID). Scientia Iranica, 15: 558-

567. 

Astrom, K.J. and T. Hagglund, 2004. Revisiting the 

Ziegler-Nichols step response method for PID 

control. J. Process Control, 14: 635-650. DOI: 

10.1016/j.jprocont.2004.01.002  

Cao, H., G. Si, Y. Zhang, X. Ma and J. Wang, 2008. 

Load control of ball mill by a high precision 

sampling fuzzy logic controller with self-optimizing. 

Asian J. Control, 10: 621-631. DOI: 10.1002/asjc.63 

Chad, A.W., 2005. Genetically evolving optimal neural 

networks. Pennsylvania State University.  

Chang, P. and J.S. Shih, 2002. The application of back 

propagation neural network of multi-channel 

piezoelectric quartz crystal sensor for mixed organic 

vapours. Tamkang J. Sci. Eng., 5: 209-217.  

Chegeni, A., A. Khoei and K. Hadidi, 2007. Improved 

genetic algorithm-based optimization of fuzzy logic 

controllers. Proceedings of the 1st Joint Congress on 

Fuzzy and Intelligent Systems, Aug. 29-31, 

Ferdowsi University of Mashhad, Iran.  

Cho, S.B., 2002. Fusion of neural networks with fuzzy 

logic and genetic algorithm. Integr. Comput. Aided 

Eng., 9: 363-372.  

Chopra, S., R. Mitra and V. Kumar, 2005. Fuzzy 

controller: Choosing an appropriate and smallest 

rule set. Int. J. Comput. Cognition, 3: 73-79.  

Corcau, J.I. and E. Stoenescu, 2007. Fuzzy logic 

controller as a power system stabilizer. Int. J. Circ. 

Syst. Signal Proc., 1: 266-273.  

Desborough, L.D. and R.M. Miller, 2002. Increasing 

customer value of industrial control performance 

monitoring-Honeywell’s experience. Chemical 

Process Control.  

Fiszelew, A., P. Britos, A. Ochoa, H. Merlino and E. 

Fernandez et al., 2007. Finding optimal neural 

network architecture using genetic algorithms. Res. 

Comput. Sci., 15: 24-27.  

Huang, S.J. and M.T. Su, 2007. Gain tuning fuzzy 

controller for an optical disk drive. Int. J. Elect. 

Comput. Eng., 2: 440-445.  

Ivakpour, J., 2006. Genetic algorithm performance.  

Khan, S., S.F. Abdulazeez, L.W. Adetunji, A.H.M.Z. 

Alam and M.J.E. Salami, 2008. Design and 

implementation of an optimal fuzzy logic controller 

using genetic algorithm. J. Comput. Sci., 4: 799-806. 

DOI: 10.3844/jcssp.2008.799.806 

Kumar, M. and D.P. Garg, 2004. Intelligent learning of 

fuzzy logic controllers via neural network and 

genetic algorithm. Proceedings of the Japan-USA 

Symposium on Flexible Automation, Jul. 19-21, 

Colorado, Denver, pp: 1-8.  

Leng, G., T.M. McGinnity and G. Prasad, 2006. Design 

for self-organizing fuzzy neural networks based on 

genetic algorithms. IEEE Trans. Fuzzy Syst., 14: 

755-766. DOI: 10.1109/TFUZZ.2006.877361 

Meza, J.L., R. Soto and J. Arriaga, 2009. An optimal 

fuzzy self-tuning PID controller for robot 

manipulators via genetic algorithm. Proceedings of 

the 8th Mexican International Conference on 

Artificial Intelligence, Nov. 9-13, IEEE Xplore 

Press, Guanajuato, pp: 21-26. DOI: 

10.1109/MICAI.2009.34 

Munasinghe, S.R., M.S. Kim and J.J. Lee, 2005. Adaptive 

neurofuzzy controller to regulate UTSG water level in 

nuclear power plants. IEEE Trans. Nuclear Sci., 52: 

421-429. DOI: 10.1109/TNS.2004.842723 

Pelusi, D., 2011a. Genetic-neuro-fuzzy controllers for 

second order control systems. Proceedings of the 

UKSim 5th European Symposium on Computer 

Modeling and Simulation, Nov. 16-18, Madrid, 

Spain, pp: 12-17.  

Pelusi, D., 2011b. On designing optimal control systems 

through genetic and neuro-fuzzy techniques. 

Proceedings of the IEEE International Symposium 

on Signal Processing and Information Technology, 

Dec. 14-17, IEEE Xplore Press, Bilbao. pp: 134-

139. DOI: 10.1109/ISSPIT.2011.6151547 

Pelusi, D., 2011c. Optimization of a fuzzy logic 

controller using genetic algorithms. IEEE 

International Conference on Intelligent Human-

Machine Systems and Cybernetics, Aug. 26-27, 

IEEE Xplore Press, Zhejiang, pp: 143-146. DOI: 

10.1109/IHMSC.2011.105 

Pelusi, D., 2012. Improving settling and rise times of 

controllers via intelligent algorithms. Proceedings of 

the 14th International Conference on Computer 

Modelling and Simulation, Mar. 28-30, IEEE 

Comprter Society, Cambridge, pp: 187-192.  

Prego, J.J.G. and L.V. Seisdedos, 2011. Tailor-made 

small simulator for a drum boiler control based on 

linear techniques. Proceedings of the IEEE 16th 

Conference on Emerging Technologies and Factory 

Automation, Sept. 5-9, IEEE Xplore Press, 

Toulouse, pp: 1-4. DOI: 

10.1109/ETFA.2011.6059211 



 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013 

 

197 Science Publications

 
JCS 

Saridakis, K.M., A.C. Chasalevris, A.J. Dentsoras and 

C.A. Papadopulos, 2006. Fusing neural networks, 

genetic algorithms and fuzzy logic for diagnosis of 

cracks in shafts. Proceedings of the 2nd Intelligent 

Production Machines and Systems Virtual 

International Conference, Jul. 3-14, Elsevier, pp: 

332-337. DOI: 10.1016/B978-008045157-2/50061-4 

Shamusuzzoha, M. and S. Skogestad, 2010. The setpoint 

overshoot method: A simple and fast closed-loop 

approach for PID tuning. J. Process Control, 20: 

1220-1234. DOI: 10.1016/j.jprocont.2010.08.003 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vaishnav, S.R. and Z.J. Khan, 2007. Design and 

performance of PID and fuzzy logic controller with 

smaller rule set for higher order system. Proceedings 

of the Word Congress on Engineering and Computer 

Science, Oct. 24-26, San Francisco, USA. 

Xue, D., D.P. Atherton and Y. Chen, 2007. Linear 

Feedback Control: Analysis and Design with 

MATLAB.  1st Edn., SIAM, Philadelphia, ISBN-10: 

0898718627, pp: 354.  

 


