
Journal of Computer Science, 9 (2): 183-197, 2013

ISSN 1549-3636

© 2013 Pelusi and Mascella, This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license

doi:10.3844/jcssp.2013.183.197 Published Online 9 (2) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Danilo Pelusi, Department of Communications Science, University of Teramo, Italy

183 Science Publications

JCS

Optimal Control Algorithms

for Second Order Systems

Danilo Pelusi and Raffaele Mascella

Department of Communications Science, University of Teramo, Italy

Received 2012-10-13, Revised 2012-12-14; Accepted 2013-04-02

ABSTRACT

Proportional Integral Derivative (PID) controllers are widely used in industrial processes for their simplicity
and robustness. The main application problems are the tuning of PID parameters to obtain good settling
time, rise time and overshoot. The challenge is to improve the timing parameters to achieve optimal control
performances. Remarkable findings are obtained through the use of Artificial Intelligence techniques as
Fuzzy Logic, Genetic Algorithms and Neural Networks. The combination of these theories can give good
results in terms of settling time, rise time and overshoot. In this study, suitable controllers able of improving
timing performance of second order plants are proposed. The results show that the PID controller has good
overshoot values and shows optimal robustness. The genetic-fuzzy controller gives a good value of settling
time and a very good overshoot value. The neural-fuzzy controller gives the best timing parameters
improving the control performances of the others two approaches. Further improvements are achieved
designing a real-time optimization algorithm which works on a genetic-neuro-fuzzy controller.

Keywords: PID Controllers, Fuzzy Logic, Genetic Algorithms, Second Order Plants, Neural Networks

1. INTRODUCTION

The quality of control in a system depends on settling
time, rise time and overshoot values. The main problem is
to optimally reduce such timing parameters, avoiding
undesirable overshoot, longer settling times and vibrations.
To solve this problem, many authors have proposed
different approaches. A first approach is the Proportional
Integral Derivative (PID) controllers application. They are
extensively used in industrial process control application.
Vaishnav and Khan (2007) designed a Ziegler-Nichols PID
controller higher order systems. A tuning method which
uses PID controller has been developed (Shamusuzzoha and
Skogestad, 2010). Such method requires one closed-loop
step setpoint response experiment similar to the classical
Ziegler-Nichols experiment. However, in complex systems
characterized by nonlinearity, large delay and time-
variance, the PID’s are of no effect (Cao et al., 2008). The
design of a PID controller is generally based on the
assumption of exact knowledge about the system. Because
the knowledge is not available for the majority of systems,
many advanced control methods have been introduced.

Some of these methods make use of the fuzzy logic
which simplifies the control designing for complex
models. As an example Kumar and Garg (2004)
designed a fuzzy controller to control a single link
manipulator robot. Moreover, a gain tuning fuzzy
controller has been designed to monitor the track
seeking in optical disks (Huang and Su, 2007). In
order to improve the control precision of a ball mill
circuit, a fuzzy interpolation algorithm is presented
(Cao et al., 2008). Moreover, PID fuzzy controllers
can be designed as power system stabilizer (Corcau and
Stoenescu, 2007).

The design of a fuzzy controller depends on the

choice of membership functions. A natural choice
through trial and errors procedures is impossible to

obtain, overall for complex systems. In these situations, a

huge computational time is necessary. In order to
overcome such difficulty, Genetic Algorithms (GA) are

applied to fuzzy controllers with good results (Khan et al.,
2008; Kumar and Garg, 2004; Chegeni et al., 2007;

Pelusi, 2011c). Such genetic methods are useful
approaches for problems that require efficient searching.

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

184 Science Publications

JCS

Khan et al. (2008) the membership functions and the

fuzzy logic rules were optimized through Genetic
Algorithms methods for a temperature control system.

Thanks to GA, Leng et al. (2006) eliminated the

limitation on symmetric membership functions and
symmetric fuzzy rules. To achieve better control

performances of complex systems, neuro-fuzzy
techniques are developed. These two techniques match

the capability of modelling a problem using the

knowledge with the capability to learn from data. A
neural-fuzzy network can self-adjust the parameters of

rule base using neural-network-based learning algorithms.
In the literature, a datadriven adaptive neuro-fuzzy

controller has been designed for the water-level control of
U-tube steam generators in nuclear power plants

(Munasinghe et al., 2005). Moreover, in (Allaoua et al.,

2009) a neuro-fuzzy controller has been designed to
control the DC motor speed.

Many authors have proposed suitable combinations
of fuzzy, genetic and neural techniques for different
applications (Leng et al., 2006; Saridakis et al., 2006;
Cho, 2002). In this way, hybrid intelligent algorithms
have been developed. For example, a hybrid algorithm
based on a genetic algorithm to design a neuro-fuzzy
network is proposed in (Leng et al., 2006). In such work,
the model has been built for a system without a priori
knowledge about the partitions of input space and the
number of fuzzy rules. Akbarzadeh et al. (2000) hybrid
paradigms are successfully implemented to solve three
prominent robot control issues. Handwritten digit
recognition can be solved through combining methods of
neural networks (Cho, 2002). The proposed hybrid
method uses some fuzzy concepts to combine the outputs
of separate networks which relevance is assigned by GA.
Good solution for real-time crack identification systems
is described in (Saridakis et al., 2006). In this work, the
analytical model is approximated with a neural network
which is used to solve the inverse problem of the crack
identification. A genetic search method produces values
for the crack attributes as input arguments to the neural
network and the genetic algorithm objective function
relies on a fuzzy logic representation. Recent studies
(Pelusi, 2011a; 2011b; 2012) have proposed genetic-
neuro-fuzzy techniques able to improve the timing
performances of second order control systems.

The aim of this study is to achieve an optimal control
performance of industrial actuators designing suitable
controllers. Four research guidelines are considered. The
first one regards the design of a PID controller based on
Ziegler-Nichols tuning formula (Xue et al., 2007).
Ziegler and Nichols presented two methods: the step
response method and the frequency response method

(Astrom and Hagglund, 2004). The first method is
presented in this work and it is applied to three different
plants. Our second approach attempts of improving the
PID timing results designing a fuzzy controller
optimized through GA techniques. The optimization is
initially made on membership functions only,
subsequently, with the same genetic procedure, is made
on fuzzy rules. The design of a suitable neuro-fuzzy
controller which improves the performances of genetic-
fuzzy controller is the third approach of our model. To
further improve the settling time and rise time values, a
suitable real-time optimization algorithm is designed. Such
algorithm works on a suitable genetic-neuro-fuzzy
controller. The target of these different approaches is also to
improve the simulation results shown in (Khan et al., 2008).

1.1. Tuning Parameters of PID Controller

The PID controllers have a wide range of applications in
industrial control because of their simple control structure.
The PID controllers need of less plant information than a
complete mathematical model. In this way, the controller
parameters can be adjusted with a minimum of effort.
One survey of Desborough and Miller (2002) indicates
that more than 97% of regulatory controllers utilize
the PID algorithm.

There are many versions of a PID controller. In this

study, we consider a controller described by Equation (1):

t

p d
0

i

1 de(t)
u(t) K e(t) e()d T

T dt

= + τ τ +

∫ (1)

where, u(t) is the input signal sent to the plant model, e(t)

= r(t)-y(t) the error, y(t) the output and r(t) is the

reference input signal. The parameters Kp, Ti and Td are

the tuning parameters. There are more ways to obtain the

tuning values of Kp, Ti and Td: our PID controller uses

the Ziegler-Nichols tuning formula. The tuning formula

is obtained when the plant model is given by a first-order

plus dead time which can be expressed by Equation 2:

sL
k

G(s)
1 sT

−

=
+

 (2)

A huge variety of plants can be approximately

modeled by (2). If the system model cannot be physically
derived, experiments can be performed to extract the
parameters for the approximate model (2). For instance,
if the step response of the plant model can be measured
through an experiment, the output signal can be recorded
and the parameters k, L and T (or a, where a = kL= T) can
be extracted (Xue et al., 2007). The proposed PID
controller is designed to control some second order control

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

185 Science Publications

JCS

systems. In order to verify the robustness of the model, we
consider three plants with different transfer functions. The
first one is typically used to approximate the working of
DC motors (Khan et al., 2008) and has the form Equation 3:

1 2

2
G (s)

s 12s 24
=

+ +
 (3)

The second transfer function (Equation 2) is used for

processes with first order dynamics with time delay

Equation 4 (Amini, 2008):

2

1
G (s)

(1 s)(1 5s)
=

+ +
 (4)

The third transfer function (Equation 5) is joined to

the attempts of many researches of improving the
tuning parameters through intelligent techniques
(Meza et al., 2009):

3 2

400
G (s)

(s 50s)
=

+
 (5)

The Fig. 1 shows the block diagram of PID controller.

The difference between the step and the output feedback is

passed as input into PID controller block. Such block

contains MATLAB functions which implement the

Ziegler-Nichols tuning formulas (Xue et al., 2007).

The output of the PID controller block serves as an input

to the transfer function block. We consider the PID

controller behavioral for different plants defined by (3), (4)

and (5) whereas the intelligent controllers are designed only

for second order plants with transfer function (3).

1.2. Design of Genetic-Fuzzy Controller

In order to improve the timing performances of designed

PID controller, suitable genetic procedures are used.

Generally, the first step to design a fuzzy system is
the choice of the number of input/output membership
functions. Assuming all possible rules are used (which is
often the case), if the membership functions number
increasing, then the number of rules grows
exponentially. It needs to avoid this situation because it
is very important trying to minimize the time to compute
the fuzzy controller outputs given some inputs. Some
studies (Chopra et al., 2005) deal with the design of
fuzzy logic controllers with less number of rules leading
to a smaller amount of computational time. The designed
fuzzy controller has two inputs: the error e, that is the
difference between the reference value and the output of
controller and the change in error de, that is the
difference between the error at time t and that one at t-1.

These inputs have seven membership functions:
Negative Big (NB), Negative Medium (NM), Negative
Small (NS), Zero Error (ZE), Positive Small (PS), Positive
Medium (PM), Positive Big (PB). The fuzzy output has the
same membership functions of fuzzy inputs. Analyzing the
findings of (Chopra et al., 2005), we define the rules of
Table 1. During the rules designing process, we have
discovered that increasing the fuzzy rules beyond 49 rules is
useless. In fact, this procedure increases the complexity of
fuzzy logic controller and has no positive effects on output
response of the system.

The Fig. 2 shows the block diagram of fuzzy
controller. The difference e between the step and the
output feedback is passed as an input into fuzzy logic
controller together to the change in error de. The output
of the fuzzy logic controller serves as an input to the
transfer function block. The membership functions
parameters are optimized through a search algorithm
based on GA. This technique assures that at least a good
local optimum can be discovered. Because GA are based
on the survival principle of the fittest, it is necessary to
establish a fitness function which provides a
performance measure of tuning parameters. Such
function can be expressed through the Equation 6 and 7:

f (x) exp(x)= − (6)

Where:

n
2

i 1

x e(i)
=

=∑ (7)

and n is the number of iterations. In this way, the error e is
reduced at minimum. The variables to optimize are four for
the first and seventh membership function (trapezoidal
functions) and three for the others five membership
functions (triangular functions). Because there are two
fuzzy inputs and one fuzzy output with seven membership
functions, the number of variables to optimize is 69.

The optimization algorithm works as follows:

Step 1: Initialize the variables to optimize.

Step 2: Compute randomly the slope parameters and

establish the termination criteria.

Step 3: If it is achieved the termination criteria, the

genetic procedure is stopped and go to Step 6.

Step 4: Implement the genetic operations as crossover,

mutation and selection (Ivakpour, 2006).

Step 5: Repeat the steps 3-4.

Step 6: Print the optimal values of slope parameters.

After 20 generations, the optimal fuzzy sets of Fig. 3-5
are obtained. The optimized fuzzy controller uses the
Mamdani inference method and the centroid
defuzzification technique.

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

186 Science Publications

JCS

Fig. 1. PID controller block diagram

Fig. 2. Fuzzy controller blocks diagram

Fig. 3. Optimized membership functions of input e

Fig. 4. Optimized membership functions of input de

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

187 Science Publications

JCS

 Fig. 5. Optimized membership functions of output

Table 1. Fuzzy rules

e\de NB NM NS ZE PS PM PB

NB NB NB NB NM NS NS ZE

NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PS PM PB

PM NS ZE PS PM PM PM PB

PB ZE PS PS PM PB PB PB

Many authors (Khan et al., 2008; Kumar and Garg,
2004; Chegeni et al., 2007; Pelusi, 2011b) have proposed
GA techniques to achieve optimal fuzzy rules. Therefore,
the above optimization algorithm is also used to find the
fuzzy rules with the higher weight. In fact, to improve
the control, it is very important discovering the rules
which give the smallest timing control parameters. For
this task, we consider the (7) as fitness function and
apply the described optimization algorithm.

1.3. Neural Networks Application

In order to improve the control performances of

genetic-fuzzy controller, a suitable optimization of fuzzy

rule is proposed. For this task, we consider a data-driven

intelligent controller based on adaptive features. A

neural-fuzzy network can self-adjust the parameters of the

fuzzy rules using neural-based learning algorithms. Our

idea is to tune the rules weights considering the rules that

give good timing performances. The fuzzy rules weights are

tuned with the constraint of achieving small values of

settling and rise time. Our control system has self-tuning

capabilities and requires an initial rule base (Table 1) to be

specified prior to training.
Generally, the design of neural networks for specific

applications is a test and error process. This process

sometime depends mainly on previous experience in
similar applications. Moreover, the performances and
the cost of a neural network are joined to neurons
number, net architecture and learning algorithms. Some
works (Fiszelew et al., 2007; Chad, 2005) are focused
in the development of methods for the evolutionary
design of architectures to search optimal configurations
of neural networks.

Among the main training techniques there is the back-
propagation algorithm. This training procedure is used in
many applications (Amini, 2008; Chang and Shih, 2002).
Back-propagation involves minimization of an error
function which is accomplished by performing gradient
descent search on the error surface.

In order to define the layers number and the neurons

number for each layer, trial and error procedures are

used. The designed neural network has three layers: the

first one has 2 neurons (equal to inputs number), the

hidden layer has 7 neurons and the output layer has 49

neurons (Fig. 6). The training technique used is back-

propagation. The network has been designed through

Neural Network Toolbox of MATLAB.
Difficult task is the definition of a suitable training

set. The training sample of our neural network is
characterized by the inputs e and de and 49 rules weights
values. The training set is obtained as follows. The error
e, the change in error de and the weights are randomly
generated and sent to the genetic-fuzzy controller. The
weights values with settling and rise time less than the
best timing values of genetic-fuzzy controller are
extracted. Formally Equation 8 and 9:

s sbestt t< (8)

and:

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

188 Science Publications

JCS

r rbestt t< (9)

where, ts is the settling time of neural-fuzzy controller
and tsbest is the best settling time of genetic-fuzzy
controller, whereas tr is the rise time of neural-fuzzy
controller and trbest is the best rise time of genetic-fuzzy
controller. The obtained training sample of 1050 patterns
is applied to the neural network.

A single presentation of all input vectors to the
network is defined as training epoch. The network is then
updated according to the results of all the presentations.
Training occurs until a maximum number of epochs
occurs or the performance goal is met. After 150 epochs
and with a goal of 0.05, the performance of neural
network is 0.0820087 (Fig. 8).

The block diagram of neuro-fuzzy controller is
showed in Fig. 7. The inputs e and de are sent to the
trained neural network which gives the optimal weights
for the 49 fuzzy rules. Such tuning parameters are passed
to the fuzzy controller together with the error signal e
and the change in error de. The output of fuzzy controller
tunes the second order plant G1(s). The difference
between the signal reference and the output feedback is
passed as an input to the neural network and fuzzy
controller. The process restarts with the calculation of
new values of the error and change in error.

1.4. Real-Time Optimization Algorithm

The genetic fuzzy controller works on a run time
optimization algorithm described before. The new idea is
to design a real-time optimization algorithm taking into
account time computer problems. To accomplish such
task, genetic techniques are again used.

The intelligent procedure performs a stochastic
search via iteratively processing populations of solutions
in according to fitness. In control applications, the fitness
is usually depending on performance measures as
settling time and rise time. To design our real-time
algorithm, we define the fitness function f as expressed
in equation 10:

1
f (x)

1 x
=

+
 (10)

with
n 2

t 1
x e(t)

=
=∑ , where n is the number of iterations.

The goal is to reduce the quantity x at minimum, where x

is the sum of square errors. The Fig. 9 shows the block

diagram of control system. In order to evaluate the

timing performance of structure, we consider the step

response of system. The difference between the step and

the output feedback is sent to the input of genetic-neuro-

fuzzy controller together with the change in error

computed by change in error block. Such inputs serve as

inputs to the trained neural network which gives the

optimal weights of fuzzy rules. At the same time, the GA

block gives the optimal MF scaling parameters for given

inputs. The output of fuzzy logic controller drives the

second order plant defined by (3).
The novelty of this approach is the real-time

optimization of MF and weights using respectively GA
and NN. The steps of our real-time optimization
algorithm are the following:

Step 1: Initialize the MF scaling parameters. The
number of parameters is 69. The population
number is 100 and the number of generation is
20. A population of problem solutions is
expressed in the form of chromosomes, i.e.,
strings encoding problem solutions.

Step 2: Define the range of each MF scaling parameter.
This is a delicate phase because there could be
undesirable overlapping. Subsequently, compute
randomly the scaling parameters and establish
the termination criteria.

Step 3: When it is achieved the termination criteria, the
intelligent procedure is stopped and go to Step 9.

Step 4: Compute the fitness function to select good
strings. The fitness function also defines the
optimal weights via the trained neural network.
The task is to achieve the maximum of f(x)
(equation 10).

Step 5: Implement the selection. The selection process
copies parent chromosomes into a tentative new
population. The number of copies reproduced for
the next generation by an individual is expected to
be directly proportional to its fitness value.

Step 6: Compute the crossover. Such genetic procedure
recombines genetic material of parent
chromosomes to produce offspring on the basis
of crossover probability. Let y, z be two
chromosomes of length 5. As an example,
considering y = 01001 and z = 11010 and
onepoint crossover at the fourth point, two new
chromosomes y0 = 01010 and z0 = 11001 are
produced.

Step 7: Implement the mutation. The mutation selects a
random position of a random string and
complements the bit value. For example, if
mutation is applied to the third bit of string y0,
the transformed string becomes 01110.

Step 8: Repeat the steps 3-7.
Step 9: Print the optimal values of MF scaling

parameters and the weights of fuzzy rules.

The real-time algorithm gives the optimized
membership functions shown in Fig. 10-12.

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

189 Science Publications

JCS

Fig. 6. Neural network architecture

Fig. 7. Neuro-fuzzy controller block diagram

Fig. 8. Neural network training plot

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

190 Science Publications

JCS

Fig. 9. Genetic-Neuro-Fuzzy controller block diagram

Fig. 10. Optimal membership functions of error obtained with real-time optimization algorithm

Fig. 11. Optimal membership functions of change-in-error obtained with real-time optimization algorithm

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

191 Science Publications

JCS

Fig. 12. Optimal membership functions of fuzzy output obtained with real-time optimization algorithm

1.5. Simulation Results

The designed controllers are simulated through the

MATLAB. The simulation results for different plants of

PID controller are shown in Table 3. Our PID controller

improves the rise time and the overshoot of (Khan et al.,

2008). In fact, the rise time of conventional PID

controller in (Khan et al., 2008) is 0.371s, whereas the

PID controller here designed has rise time equal to

0.118s. Moreover, the overshoot of (Khan et al., 2008) is

0.6748, whereas our PID controller gives a value of

0.223. The step response of PID controller with plant

defined by (3) is shown in Fig. 13. Moreover, the

controller has shown good robustness performances

changing the plant parameters. In Table 3 are shown the

settling time, rise time and the overshoot values of

control system for the three different plants G1(s), G2(s)

and G3(s). The step response is respectively shown in

Fig. 13-15.

The genetic-fuzzy controller with optimized MF has

better ts and tr than fuzzy logic PD controller in (Khan

et al., 2008). In our work, the settling time is 0.699s

versus a value of 0.8735s of fuzzy logic PD controller

designed in (Khan et al., 2008). Comparing the results, we

can note that the rise time has an improvement of above

45% percent respect to (Khan et al., 2008). The genetic-

fuzzy controller also gives a settling time better than

our PID controller (considering G1(s) as transfer

function) and zero overshoot. The improvements can be

deduced observing PID and genetic-fuzzy controllers

step response (Fig.13-16). We remind that the genetic

fuzzy, neuro-fuzzy and genetic-neuro-fuzzy controllers

are applied on plants with transfer function defined by

(3).

Better timing results are achieved optimizing the

fuzzy rules through the run-time optimization algorithm..

The optimization of rules weights shows that there are five

more relevant rules (Table 4). These rules have weight

greater than 0.9. We can note that with error e equal to

NB and NM and for all de values, the fuzzy rules are

characterized by weights less equal than 0.9. Moreover,

with e = ZE there are not relevant rules. The genetic

fuzzy controller with optimal rules improves the timing

values of fuzzy controller with optimal membership

functions. In fact, the settling time is 0.436s, versus the

value of 0.699s of genetic fuzzy controller with only

optimal membership functions. Moreover, also the

value of tr is improved from 0.385s to 0.241s.

Thanks to the constraints (8) and (9) defined in the

neuro-fuzzy controller with tsbest = 0.699s and trbest = 0.385s,

the genetic-fuzzy controller results are improved. In fact,

the adaptive neuro fuzzy approach gives a settling time of

0.423s and a rise time of 0.234s. The step response of

neuro-fuzzy controller is shown in Fig. 17.

Further improvements are achieved defining a real-

time optimization procedure. The designed genetic-neuro-

fuzzy controller works in according with the real-time

optimization algorithm described before. Because such

algorithm adopts Fuzzy Logic, Genetic Algorithms and

Neural Networks techniques which run at the same time,

computational cost must be considered.

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

192 Science Publications

JCS

Fig. 13. Step response of PID controller for G1(s) plant

Fig. 14. Step response of PID controller for G2(s) plant

Fig. 15. Step response of PID controller for G3(s) plant

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

193 Science Publications

JCS

Fig. 16. Step response of genetic-fuzzy controller

Fig. 17. Step response of neuro-fuzzy controller

We simulate our controller through the MATLAB

software and run the optimization algorithm on a

2.5GHz CPU speed computer. The algorithm yields the

optimal parameters after about 10 h time computer.

This is due to the fact that the variables to optimize are

69 and that GA and NN work together. Moreover, the

convergence of the algorithm depends on the amplitude

of optimization parameters ranges.

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

194 Science Publications

JCS

Some time computer problems come from fuzzy rules

number of the controller. Such number depends on the

membership functions number of each fuzzy input. In

order to increase the precision of system, a MF number

greater than 7 has been considered. However, the

results show that increasing the MF number do not

improve the controller performances. The optimal

membership functions of inputs and output are shown

in Fig. 10-12. We can note that there are different

slopes for each membership function. We underline that

the first membership function and the seventh one are

characterized by trapezoidal shape. The first

membership function of change in error fuzzy input

tends to assume a triangular shape rather than

trapezoidal one (Fig. 11). From the observation of Fig.

12, we deduce that the middle membership functions of

output (NS, ZE, PS) are narrow. This means that near

the zero, the output value must be evaluated more

exactly than others output values.

Let <e: de; o> be the fuzzy rule with e and de as

inputs and o as output. The optimization results of the

fuzzy rules via Neural Networks show that the more

relevant rule, i.e., the rule with the greatest weight, is

<PB: NS; PS>. Such rule shows a weight value equal to

1. Viceversa, the rule <PB: ZE; PM> assumes zero

value. Three rules have weight less than 0.504, whereas

the other ones have weights that lie between 0.504 and

0.777 (Table 2).

The Fig. 18 shows the step response of the genetic-

neuro-fuzzy controller. We can note that the overshoot is

equal to zero, therefore some results of (Khan et al.,

2008) are improved. In fact, in (Khan et al., 2008) the

optimized fuzzy logic PD controller yields a not zero

overshoot value. However, the main designing problem

of the control systems is to reduce the rise time.

Sometime, the huge reduction of the rise time causes

high overshoot values (Khan et al., 2008). The timing

results obtained using the real-time optimization

algorithm are shown in Table 5, where GFC is Genetic

Fuzzy Controller, NFC is Neuro Fuzzy Controller and

GNFC is Genetic Neuro Fuzzy Controller. Comparing

our results with the previous ones, we can note that there

are improvements. In fact, our controller yields a settling

time equal to 0.276s versus a value of 0.423s obtained

with a run-time algorithm. Moreover, the rise time is

reduced from 0.234s to 0.153s. Finally, the real-time

optimization algorithm assures an improvement of 35%

of control performances.

The good values of settling and rise times given by

the optimized controller in (Khan et al., 2008), are

obtained at the expense of overshoot value. The optimized

fuzzy logic PD controller shows a settling time equal to

0.2526s and a rise time equal to 0.1559s with a not equal

zero overshoot. Therefore, the other significant result of

our research is that with zero overshoot, also settling time

and rise time of optimized controller in (Khan et al., 2008)

are improved (Table 5).

Finally, by comparing the results of control

systems performances, we conclude that the genetic-

neuro-fuzzy and neuro-fuzzy controllers produces a

more desirable performance when compared with PID

and genetic-fuzzy controllers.

Table 2. Optimized fuzzy rules weights

e\de NB NM NS ZE PS PM PB

NB 0.572 0.473 0.446 0.553 0.588 0.693 0.505

NM 0.693 0.744 0.661 0.650 0.550 0.714 0.670

NS 0.706 0.777 0.591 0.577 0.634 0.678 0.668

ZE 0.686 0.640 0.652 0.608 0.535 0.561 0.407

PS 0.728 0.572 0.653 0.627 0.666 0.563 0.653

PM 0.612 0.726 0.588 0.634 0.635 0.518 0.653

PB 0.504 0.617 1.000 0.000 0.676 0.573 0.694

Table 3. Settling time and rise time of PID controller for

different plants

 G1(sec) G2(sec) G3 (sec)

ts (sec) 0.846 8.520 0.194

tr (sec) 0.118 1.110 0.022

Overshoot 0.223 0.251 0.369

Table 4. Fuzzy rules with weight greater than 0.9

e/de NB NM NS ZE PS PM PB

NB NB NB NB NM NS NS ZE

NM NB NM NM NM NS ZE PS

NS NB NM NS NS ZE PS PM

ZE NB NM NS ZE PS PM PB

PS NM NS ZE PS PS PM PB

PM NS ZE PS PM PM PM PB

PB ZE PS PS PM PB PB PB

Table 5. Timing performance of PID controller, genetic-fuzzy

controller and neuro-fuzzy controller

 GFC GFC NFC GNFC

 MF-opt MF,W-opt Run-time Real-time

ts (sec) 0.699 0.436 0.423 0.276

tr (sec) 0.385 0.241 0.234 0.153

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

195 Science Publications

JCS

Fig. 18. Step response of Genetic-Neuro-Fuzzy controller

2. CONCLUSION

Different approaches have been presented for the

control of second order plants. The first approach

employs a PID controller based on Ziegler-Nichols

tuning technique to control second order systems. The

designed PID controller gives good results in terms of

rise time. In fact, the simulations shown a value of tr =

0.118s. Moreover the controller has shown a good

robustness considering the plant parameters changing.

In order to improve the overshoot and the settling time,

a fuzzy controller with optimized membership

functions is designed. This optimization is

accomplished through the application of genetic

procedures. The genetic-fuzzy controller gives a good

value of settling time and a very good overshoot value.

Better results are obtained applying the optimization

algorithm also to optimize the fuzzy rules. Another

approach is based on the construction of data-driven

intelligent controllers able to adjust the weights of

fuzzy rules. This task is accomplished through the

neural networks application. The neural-fuzzy

controller gives good timing parameters improving the

control performances of the others approaches. Taking

into account the real-time optimization of membership

functions with the best weights given by trained neural

network, the best settling time and rise time values are

achieved. The goodness of such results is obvious if

settling time ts = 0.276s and rise time tr = 0.153s values

are compared with those ones in (Khan et al., 2008). In

other words, the simulation results show that the

proposed approaches improve the control performance

of conventional PID and fuzzy logic PD controllers.

The next task will be the application of genetic-fuzzy,

neuro-fuzzy and genetic-neuro-fuzzy controllers to

plants defined by (4) and (5). To reduce the

computational time for the real-time optimization, fuzzy

rules with low weight will be identified and removed to

make fuzzy controller more compact and transparent.

Another task will be design a suitable training sample to

improve the training phase of the neural network. A

further improvement will consist of optimizing the

weights of the neural networks through Genetic

Algorithms. Our attempt will be improving the training

phase to achieve optimal neural networks.
A future challenge will be the application of the

proposed skills on simulators for drum boiler
(Prego and Seisdedos, 2011).

3. REFERENCES

Akbarzadeh, M.R.T., K. Kumbla, E. Tunstel and M.

Jamshidi, 2000. Soft computing for autonomous

robotic systems. Comput. Elect. Eng., 26: 5-32.

DOI: 10.1016/S0045-7906(99)00027-0

Allaoua, B., A Laoufi, B. Gasbaoui and A.

Abderrahmani, 2009. Neuro-fuzzy DC motor speed

control using particle swarm optimization.

Department of Electrical Engineering, Bechar

University.

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

196 Science Publications

JCS

Amini, J., 2008. Optimum learning rate in back-

propagation n eural network for classification of

satellite images (IRS-ID). Scientia Iranica, 15: 558-

567.

Astrom, K.J. and T. Hagglund, 2004. Revisiting the

Ziegler-Nichols step response method for PID

control. J. Process Control, 14: 635-650. DOI:

10.1016/j.jprocont.2004.01.002

Cao, H., G. Si, Y. Zhang, X. Ma and J. Wang, 2008.

Load control of ball mill by a high precision

sampling fuzzy logic controller with self-optimizing.

Asian J. Control, 10: 621-631. DOI: 10.1002/asjc.63

Chad, A.W., 2005. Genetically evolving optimal neural

networks. Pennsylvania State University.

Chang, P. and J.S. Shih, 2002. The application of back

propagation neural network of multi-channel

piezoelectric quartz crystal sensor for mixed organic

vapours. Tamkang J. Sci. Eng., 5: 209-217.

Chegeni, A., A. Khoei and K. Hadidi, 2007. Improved

genetic algorithm-based optimization of fuzzy logic

controllers. Proceedings of the 1st Joint Congress on

Fuzzy and Intelligent Systems, Aug. 29-31,

Ferdowsi University of Mashhad, Iran.

Cho, S.B., 2002. Fusion of neural networks with fuzzy

logic and genetic algorithm. Integr. Comput. Aided

Eng., 9: 363-372.

Chopra, S., R. Mitra and V. Kumar, 2005. Fuzzy

controller: Choosing an appropriate and smallest

rule set. Int. J. Comput. Cognition, 3: 73-79.

Corcau, J.I. and E. Stoenescu, 2007. Fuzzy logic

controller as a power system stabilizer. Int. J. Circ.

Syst. Signal Proc., 1: 266-273.

Desborough, L.D. and R.M. Miller, 2002. Increasing

customer value of industrial control performance

monitoring-Honeywell’s experience. Chemical

Process Control.

Fiszelew, A., P. Britos, A. Ochoa, H. Merlino and E.

Fernandez et al., 2007. Finding optimal neural

network architecture using genetic algorithms. Res.

Comput. Sci., 15: 24-27.

Huang, S.J. and M.T. Su, 2007. Gain tuning fuzzy

controller for an optical disk drive. Int. J. Elect.

Comput. Eng., 2: 440-445.

Ivakpour, J., 2006. Genetic algorithm performance.

Khan, S., S.F. Abdulazeez, L.W. Adetunji, A.H.M.Z.

Alam and M.J.E. Salami, 2008. Design and

implementation of an optimal fuzzy logic controller

using genetic algorithm. J. Comput. Sci., 4: 799-806.

DOI: 10.3844/jcssp.2008.799.806

Kumar, M. and D.P. Garg, 2004. Intelligent learning of

fuzzy logic controllers via neural network and

genetic algorithm. Proceedings of the Japan-USA

Symposium on Flexible Automation, Jul. 19-21,

Colorado, Denver, pp: 1-8.

Leng, G., T.M. McGinnity and G. Prasad, 2006. Design

for self-organizing fuzzy neural networks based on

genetic algorithms. IEEE Trans. Fuzzy Syst., 14:

755-766. DOI: 10.1109/TFUZZ.2006.877361

Meza, J.L., R. Soto and J. Arriaga, 2009. An optimal

fuzzy self-tuning PID controller for robot

manipulators via genetic algorithm. Proceedings of

the 8th Mexican International Conference on

Artificial Intelligence, Nov. 9-13, IEEE Xplore

Press, Guanajuato, pp: 21-26. DOI:

10.1109/MICAI.2009.34

Munasinghe, S.R., M.S. Kim and J.J. Lee, 2005. Adaptive

neurofuzzy controller to regulate UTSG water level in

nuclear power plants. IEEE Trans. Nuclear Sci., 52:

421-429. DOI: 10.1109/TNS.2004.842723

Pelusi, D., 2011a. Genetic-neuro-fuzzy controllers for

second order control systems. Proceedings of the

UKSim 5th European Symposium on Computer

Modeling and Simulation, Nov. 16-18, Madrid,

Spain, pp: 12-17.

Pelusi, D., 2011b. On designing optimal control systems

through genetic and neuro-fuzzy techniques.

Proceedings of the IEEE International Symposium

on Signal Processing and Information Technology,

Dec. 14-17, IEEE Xplore Press, Bilbao. pp: 134-

139. DOI: 10.1109/ISSPIT.2011.6151547

Pelusi, D., 2011c. Optimization of a fuzzy logic

controller using genetic algorithms. IEEE

International Conference on Intelligent Human-

Machine Systems and Cybernetics, Aug. 26-27,

IEEE Xplore Press, Zhejiang, pp: 143-146. DOI:

10.1109/IHMSC.2011.105

Pelusi, D., 2012. Improving settling and rise times of

controllers via intelligent algorithms. Proceedings of

the 14th International Conference on Computer

Modelling and Simulation, Mar. 28-30, IEEE

Comprter Society, Cambridge, pp: 187-192.

Prego, J.J.G. and L.V. Seisdedos, 2011. Tailor-made

small simulator for a drum boiler control based on

linear techniques. Proceedings of the IEEE 16th

Conference on Emerging Technologies and Factory

Automation, Sept. 5-9, IEEE Xplore Press,

Toulouse, pp: 1-4. DOI:

10.1109/ETFA.2011.6059211

 Danilo Pelusi and Raffaele Mascella / Journal of Computer Science 9 (2): 183-197, 2013

197 Science Publications

JCS

Saridakis, K.M., A.C. Chasalevris, A.J. Dentsoras and

C.A. Papadopulos, 2006. Fusing neural networks,

genetic algorithms and fuzzy logic for diagnosis of

cracks in shafts. Proceedings of the 2nd Intelligent

Production Machines and Systems Virtual

International Conference, Jul. 3-14, Elsevier, pp:

332-337. DOI: 10.1016/B978-008045157-2/50061-4

Shamusuzzoha, M. and S. Skogestad, 2010. The setpoint

overshoot method: A simple and fast closed-loop

approach for PID tuning. J. Process Control, 20:

1220-1234. DOI: 10.1016/j.jprocont.2010.08.003

Vaishnav, S.R. and Z.J. Khan, 2007. Design and

performance of PID and fuzzy logic controller with

smaller rule set for higher order system. Proceedings

of the Word Congress on Engineering and Computer

Science, Oct. 24-26, San Francisco, USA.

Xue, D., D.P. Atherton and Y. Chen, 2007. Linear

Feedback Control: Analysis and Design with

MATLAB. 1st Edn., SIAM, Philadelphia, ISBN-10:

0898718627, pp: 354.

