
Journal of Computer Science 9 (9): 1224-1231, 2013
ISSN: 1549-3636
© 2013 Science Publications
doi:10.3844/jcssp.2013.1224.1231 Published Online 9 (9) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Usha Veerasamy Arivazhagu, Department of Computer Science and Engineering, Sathyabama University,
 Chennai, India

1224 Science Publications

JCS

REPLACEMENT MECHANISM
OF CACHING TECHNIQUE FOR QUERY

ROUTING IN PEER TO PEER NETWORKS

1Usha Veerasamy Arivazhagu and 2Subramaniam Srinivasan

1Department of Computer Science and Engineering, Sathyabama University, Chennai, India
2Department of Computer Science and Engineering, Anna University, Regional office, Madurai, India

Received 2013-07-02; Revised 2013-07-15; Accepted 2013-07-27

ABSTRACT

In this approach we are proposing an extension to our previous work which deals with Trust Based Routing
in the peer to peer network. This peer to peer network is carried out without using a caching mechanism to
store the data packets while routing. To achieve this caching mechanism we have proposed methods for
caching the data packets in the peers and also to replace these data packets with the new data packets in the
next routing process. The method proposed to store the data packets is the Cache Mechanism approach,
where this mechanism considers the throughput and the aggregated delay. To get this aggregated delay it
considers the latency to return the current reply (Lc) and the latency to reply future data requests (Lf). Then
an approach has been proposed to replace this stored data packets with the new data packets for the next
routing process where the old data packets are removed from the peer’s cache and the new data packets will
be moved to the cache.

Keywords: Cache Mechanism, Cache Replacement, Peer to Peer Networks, Routing

1. INTRODUCTION

The network in which distributed resources are
involved to perform a function in a decentralized manner
is referred as P2P systems. The computation of power,
data and network bandwidth are included in the
resources. The distributed computing, data/content
sharing, communication and collaboration or platform
services are considered as functions in the network. The
term decentralized is used in case of applying
algorithms, data and metadata or to all of them. The
scalability in terms of the node number, resource
number, node autonomy, dynamicity, resource
heterogeneity decentralized control and self
configuration are some characteristics of P2P systems
(Al King et al., 2010; Santillan et al., 2010).

The present Internet is expected to be dominated by
content-oriented traffic, including but not limited to P2P
traffic, which does not conform to the client-server

paradigm and generates redundant indirection overheads
when users try to retrieve the desired data. Since the
unstructured P2P network is less efficient due to its blind
flooding search mechanism. The irregularity between the
Internet design and the real usage is expected to be further
increased, as the Internet is envisaged to provide the
means to share and distribute multimedia business and
user-centric services, with superior quality and striking
flexibility from everyone to everyone. In consequence, it
is necessary to redesign the internet based on a content-
centric paradigm to provide data/content to the users in an
efficient manner (Zahariadis et al., 2010).

In some of the P2P networks does not use cache
mechanism through which the maintenance cost of the
network gradually increases. During the routing
between the peers if the data packets are lost the
destination node once again have to request the source
node to resend the data packets through which the delay
between the peers increases.

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1225 Science Publications

JCS

If any p2p networks implement the cache mechanism
it has to have a cache replacement policy else it becomes
more difficulty for the peers to store all the data packets
during the routing. This leads to loss of more data
packets in the network and also to inefficient routing.
Through this cache replacement policy it is possible to
replace the cache with the most recent entries. The main
drawback of this replacement policy is the risk that cache
content may become obsolete. We propose trust based
query routing technique for P2P Networks. Initially the
node with maximum trust value is chosen as cluster
head. These cluster heads are designated as trust
managers. Each peer maintains a trust table which gets
updated once it gets feedback from the trust manager
about the resource requested peer. If the update denotes
that the node is reachable and trusted, the routing is
performed. Otherwise its echo time is verified again to
decide the re-routing process. During peer node join or
leave action, bootstrap technique is employed. Though
cluster based routing reduces the overhead and delay, if
the requested item is not present in the current cluster,
it has to fetch the data from the other cluster
(Arivazhagu and Srinivasan, 2012). If the destination
node is located far away from the source cluster head, it
will increase the delay. Here it explains about the
secured routing among all the peers and the status of the
peers. The cost of the network can be reduced by storing
the data packets during the routing. Delay can be reduced
by retrieving the loss of data during routing by this cache
mechanism. So as an extension to the previous works,
we propose a caching mechanism which can reduce the
delay and overhead to great extent.

2. MATERIALS AND METHODS

Hefeeda et al. (2011) have proposed pCache
method which is design and evaluation of a complete,
running, proxy cache for P2P traffic. pCache
transparently intercepts and serves traffic from
different P2P systems. A new storage system is
proposed and implemented in pCache. This storage
system is optimized for storing P2P traffic and it is
shown to outperform other storage systems. In
addition, a new algorithm to infer the information
required to store and serve P2P traffic by the cache is
proposed. The advantage of this approach is that this
method saves the bandwidth usage and also reduces
the load on the backbone links.

Zhao et al. (2010) have proposed a novel asymmetric
cooperative cache approach, where the data requests are
transmitted to the cache layer on every node, but the data

replies are only transmitted to the cache layer at the
intermediate nodes that need to cache the data. This
solution not only reduces the overhead of copying data
between the user space and the kernel space, it also
allows data pipelines to reduce the end-to-end delay.
They have also studied the effects of different MAC
layers, such as 802.11-based ad hoc networks and multi-
interface-multichannel-based mesh networks, on the
performance of cooperative cache. The advantage of this
approach is that it can significantly reduce the data
access delay compared to the symmetric approach due to
data pipelines.

Filali and Huet (2010) have proposed two schemes
which can be used to improve the search performance in
unstructured peer-to-peer networks. The first one is a simple
caching mechanism based on resource descriptions. Peers
that offer resources send periodic advertisement messages.
These messages are stored into a cache and are used for
routing requests. The second scheme is a dynamic Time-
To-Live (TTL) enabling messages to break their horizon.
Instead of decreasing the query TTL by 1 at each hop, it is
decreased by a value v such as 0 <v<1. The main aim of
this approach is it achieves a high success rate while
incurring low search traffic.

Akon et al. (2010) have proposed Systematic P2P
Aided Cache Enhancement or SPACE, a new
collaboration scheme among clients in a computer
cluster of a high performance computing facility to share
their caches with each other. The collaboration is
achieved in a distributed manner and is designed based
on Peer-to-Peer computing model. The objective is to
provide a decentralized solution and a near optimal
performance with reasonably low overhead. The
advantage of this approach is that the SPACE evenly
distributes workloads among participators and entirely
eliminates any requirement of a central cache manager.

Brunkhorst and Dhraief (2007) have proposed the use
of semantic caching in the environment of schema-based
super-peer networks. Different from traditional caching,
semantic caching allows the answering of queries that
are not in the cache directly. The challenge of answering
the queries using the cache is reduced to the problem of
answering queries using materialized views. For this
purpose the authors have implemented the MiniCon-
algorithm, which delivers the maximally-contained-
rewritings of a posed query based on the stored views.
The advantage of this approach is that this method does
the job efficiently when there are large numbers of
queries in the network.

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1226 Science Publications

JCS

2.1. The Cache Mechanism Approach

In this cache mechanism, in the first phase after a
request message is generated and it is passed down to the
cache layer of the node. To forward this request message
to the next hop, the cache layer wraps the original
request message with next hop address to reach the
destination. Here, we consider that the cache layer which
caches the incoming data packets of the node can access
the routing table and find the next hop to reach the
destination node. This way the packet is received and
processed hop by hop on the path from the requester to
the destination node. The destination node needs to
determine the benefit of caching data packets on an
intermediate node and decide whether to cache the data
or no. After an intermediate node (Ni) caches data
packets forwarding the requests to the destination node,
saving the communication overhead between Ni and the
data center. In the Fig. 1 it actually explain the purpose
of the cache layer in nodes. Here the N1 node which is
the source node sends the data packets to the destination
node N6. These data packets sent by the source node
reaches the destination node through the intermediate
nodes between them. When these data packets are
transmitted from the source node every intermediate
node caches the data packets in them. After caching
these data packets the intermediate node forwards those
data packets to the next hop in the network. This way the
data packets are stored in all the intermediate nodes till
the data packets reaches the destination node. So that if
any data packets are lost during the transmission the data
packets can be requested from the intermediate node
instead requesting the source node again.

2.2. Frequency at a Node

Node’s frequency to access max data packets per unit
time, but excluding the requests forwarded from other
nodes on the forwarding path. To compute this
Frequency of a node, a node first count all the requests it
receives for the given data packet and also the requests
generated by itself then divide by the amount of time
since the node starts to participate caching. This way it
computes the total data request frequency (ri). The node
can attach the value of ri to the forwarding request. When
the destination node receives the value of ri for each
node along the path, it can compute Nf as Equation (1):

if1 i r 1≤ ≤ −

i i+1
f

n

r r
N ifi = n

r

−
=

 (1)

2.3. Node Delay

The delay to forward a data item with size S from the
cache layer of Ni to the cache layer of Nj, without handing
the data up to the cache layer of any intermediate nodes.
ND i,j[S] is hard to measure because it is affected by many
factors, such as transmission interference, channel
diversities, node mobility, Equation (2):

j 1

ij
k iij k,k+1

S
1 * M

MM
ND [S] =

Tp Tp

−

=

 −
 +∑ (2)

Where:
ND i,j[S] = The node’s delay from one node to other

with S as the data size
Tpk,k+1 = The link throughput between the

neighboring nodes
 M = The size of MTU (Maximum Transmission

Unit) which as to be set
Tpi,j = The throughput between two caching nodes

In a cache placement mechanism the total delay (D) is
aggregated. To get this aggregated delay we also consider
the latency to return the current reply (Lc) and the latency
to reply future data requests (Lf) Equation (3):

() ()
i i+1

m

m m-1

C S 0,C1 S
i=1 i=1

S S

C ,C

C ,n

L = P(D) + ND (D) + ND

D ND D+ + +

∑ ∑
 (3)

Lc = Refers to the latency to return the current reply
ci = Refers to the subscript of the node Nci on the

forwarding path, which implies that node Nci is
ci hops away from the destination.

DS = Refers to the data size
P(DS) = Refers data processing delay

At m nodes the data are reassembled and the
forwarding path is cut into m+1 piece, respectively.
Where, fj is the excluded data access frequency at node j;
RS is the size of the request message for the data request
DS is the size of the data, respectively. Finally the Cache
Placement (CP) set is optimal if it can minimize the
Equation (4):

i+1

f i 0, j S 0, j S
j=1

m-1

j S S
i=1 i=1

n 1

j S S

C 11

C 1

C , j C , ji i

C , j C , jm m
j Cm

L = f (ND (R) + ND (D)) t

f (ND (R) ND (D)) t

f (ND (R) ND (D) t
−

−

−

=

∆

+ + ∆

+ + ∆

∑

∑ ∑

∑

 (4)

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1227 Science Publications

JCS

Fig. 1. Cache mechanism approach

weighted aggregate delay D, which is given by:

D = LC + Lf

2.4. Throughput

When the links lj uses the channel different from the
(l j-1 …… lj-h) within its interference range h hops
Equation (5):

i, j+1 i, j j, j+1Tp =min (Tp ,Tp) (5)

When both the links lj and (lj-1 …… lj-h) uses the
same channel for the transmission of the data packets in
the network then Equation (6):

i, j+1

i, j j, j+1

1
Tp =

1 1
+

Tp Tp

 (6)

2.5. Caching Mechanism Algorithm

1. for all nodes Ni to Ni-1
2. Check the trust based routing is satisfied
3. End if

4. Checks the Throughput with the Link Throughput
 Tp[i,i+1] = LT[i]
5. Then check for
 Throughput of the links between the nodes, Tpi, j
 Delay of forwarding data packets, NDd[i, j]
6. When the delay D tends to NDd[0,n]
7. When cache placement (CP) set becomes null
8. Caching nodes (Cn) for the destination becomes 0
9. D tends to D + f[i] (Dd[0,i] + Rd [0,i])∆t
10. for all k=0 to n-2 do
11. ∆LC ← P(DS) + NDd[pos, k+1] + NDd[k+1, n] -

NDd[pos, n]
12. ∆Lf ← 0
13. for all i=k+1 to n-1 do
14. ∆Lf ← ∆Lf + (NDd[pos, i] + Rd[pos, i] - NDd[k+1, i]

- Rd[k+1, i]) f[i] ∆t
15. end for
16. D = LC + Lf
17. D ←̀ D + ∆LC - ∆Lf
18. if D` < D
19. D ← D`
20. CP ← CP U Nk+1

21. pos ← k+1
22. end if
23. end for

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1228 Science Publications

JCS

In the above algorithm, initially the routing is formed
through the trust based routing which is the previous
work. Once the trust based routing is satisfied, the search
for the cache will takes place in the network. During this
process the source peer checks the Throughput (TP) of
the node and its neighbor node with the Link Throughput
(LT) of the node. Then it checks when the total Delay
(D) tends to the Node Delay (ND) i.e. the delay occurred
when the Cache Placement (CP) set becomes null to the
destination i.e. When k = 0, no cache node is found
between the destination and the source. This total delay
D is the sum of latency to return the current reply (Lc)
and the latency to reply future data requests (Lf). From
this total delay the optimal Delay (D`) is calculated. For
this optimal delay also considers the variations in the Lc

and Lf i.e., ∆LC and ∆Lf. If this optimal delay is less than
the total delay then the total delay tends to optimal delay.
Then finally the optimal Cache Placement (CP) set is
found from the total caching Nodes (Nk).

2.6. Cache Replacement Policy

The cache replacement policy in the network defines
a strategy for replacement of items when supplementary
space is needed in the cache. The strategy is used to
assign values to the items in the cache; the items with the
lowest value are then replaced first. Since these cached
resources could become out-of-date under resource
dynamicity because the longer a resource is cached, the
staler it becomes. So whenever a data packet is received,
the peer extracts the details of different resources and
peer get updated whenever an entry is made by the data
packets into the cache layer.

After the entry the peer first checks if there is a related
cache entry. If any entry is found then the peer updates
this entry. Then finally the data packet will overwrite
previous cache entries in the peer. Some of the most
known cache replacement policies are First in First Out
(FIFO), Random, Least Recently Used (LRU) and Least
Frequently Used (LFU). An important asset is that the
cache size does not depend on the number of peers in the
network. But rather, the cache size depends on the number
of different resource classes due to resource aggregation
policy (Filali and Huet, 2010; Akon et al., 2010).

2.7. Systematic P2P Aided Cache Enhancement
(SPACE)

In the peer to peer network a peer maintains a set
which is known as Local Cache Information (LCI) which
refers to the local cache. This set of LCI includes an
entry for each of the locally cached disk blocks. An entry
x of LCI (denoted as LCI(x)) consists of the tuple (ax,
clkx, obx, ptrx). Here, ax is the address that the first block
LCI(x) is holding. The clkx maintains the clock tick since

the last reference of the cache block. The obx factor is a
simple flag and indicates the novelty of a cache block.
When a cache block is retrieved from the destination, it
is marked as original and replicas of an original cache
block are designated as non-original. The last tuple
element ptrx holds the reference to the local cache
memory where the actual disk data is physically.

2.8. Cache Replacement Policy Algorithm

1. Search for a peer p € LCI, such that clkp < clkmin
2. If the peer p is not null, then
3. search for peer p € LCI such that clkp ≤ clkn and obp ≠
originality where n €LCI and p≠n
4. Mark that peer p for replacement
5. Remove data from peer p cache
6. Move the data packets to the peer p cache
7. Return peer p
8. End

Initially in the cache replacement policy the source
peer searches for a neighbor peer p to check whether the
peer’s cache. This checking is done in order to know that
the cache is already filled with the data or the cache is
free. If the cache is free the data packets are stored in it
directly. If the peer’s cache is not free the source peer
checks the clkp which maintains the clock tick since the
last reference of the cache block and compares this last
reference with the new reference which has to be stored
i.e. clkn where the old data of the cache should not be
same with new data packets to be added. Also the source
peer checks for the status of the originality of the block.
Then that peer will be marked for the replacement and
the old data packets will be removed and the new data
packets will be moved to that peer’s cache.

3. RESULTS AND DISCUSSION

3.1. Simulation Results

This section deals with the experimental performance
evaluation of our algorithms through simulations. In order
to test our technique, the NS-2 simulator is used. NS-2 is a
general purpose simulation tool that provides discrete
event simulation of user defined networks. We have used
the Bit Torrent packet-level simulator for P2P networks. A
network topology is only used for the packet-level
simulator. We use a topology shown in Fig. 2 for our
simulation. In this topology, peer nodes form 5 clusters
Server Agents (marked as SA). The SA is marked with
different colors. Each SA is connected to an access router.
The requested information is fetched from the best peer by
the source peer. We compare our intelligent caching
mechanism (TBICSQ) routing technique with existing
SPACE technique (Akon et al., 2010).

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1229 Science Publications

JCS

Fig. 2. Network topology

Fig. 3. Rate Vs received bandwidth

Fig. 4. Rate Vs delay

3.2. Based on Rate

In our first experiment we vary the transmission rate
as 250,500,750 and 1000Kb.

From Fig. 3, we can see that the Received bandwidth
of our proposed TBICSQ is higher than the existing
SPACE technique. From Fig. 4, we can see that the
delay of our proposed TBICSQ is less than the existing
SPACE technique. From Fig. 5, we can see that the
throughput of our proposed TBICSQ is higher than the
existing SPACE technique. From Fig. 6, we can see that
the packet drop of our proposed TBICSQ is less than the
existing SPACE technique.

3.3. Based on Cache Size

In our second experiment we vary the cache size as
100,200,300,400 and 500.

From Fig. 7, we can see that the Received bandwidth
of our proposed TBICSQ is higher than the existing
SPACE technique. From Fig. 8, we can see that the
delay of our proposed TBICSQ is less than the existing
SPACE technique. From Fig. 9, we can see that the
packet drop of our proposed TBICSQ is less than the
existing SPACE technique. From Fig. 10, we can see
that the throughput of our proposed TBICSQ is higher
than the existing SPACE technique.

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1230 Science Publications

JCS

Fig. 5. Rate Vs throughput

Fig. 6. Rate Vs drop

Fig. 7. Cache Size Vs received bandwidth

Fig. 8. Cache size Vs delay

Fig. 9. Cache size Vs drop

Fig. 10. Cache size Vs throughput

4. CONCLUSION

In this approach we are proposing an extension to our
previous work which deals with Trust Based Routing in
the pee r to peer network. This peer to peer network is
carried out without using a caching mechanism to store
the data packets while routing. To achieve this caching
mechanism we have proposed methods for caching the
data packets in the peers and also to replace these data
packets with the new data packets in the next routing
process. The method to store the data packets is the
Cache Mechanism, where this mechanism considers the
throughput and the aggregated delay. To get this
aggregated delay it considers the latency to return the
current reply (Lc) and the latency to reply future data
requests (Lf). Then to replace this stored data packets
with the new data packets for the next routing process
the SPACE method is proposed where the old data
packets are removed from the peer’s cache and the new
data packets will be moved to the cache. Through this we
achieve minimum delay during the routing of the data
packets and the loss of the data packets will be decreased
by caching the data packets in all the peers while routing.
The maximum throughput will be achieved since the

Usha Veerasamy Arivazhagu and Subramaniam Srinivasan / Journal of Computer Science 9 (9): 1224-1231, 2013

1231 Science Publications

JCS

delay is decreased in the network. By the simulation
results it shows that the proposed technique reduces the
delay, increased in throughput and minimization of
Packet drop. When compared to the existing technique
.In future, this work is extended to focus with specific
replacement policy algorithm and security issues with
simulation results.

5. REFERENCES

Akon, M., T. Islam, X. Shen and A. Singh, 2010.
SPACE: A lightweight collaborative caching for
clusters. Peer-to-Peer Netw. Appli., 3: 83-99. DOI:
10.1007/s12083-009-0047-5

Al King, R., A. Hameurlain and F. Morvan, 2010. Query
routing and processing in peer-to-peer data sharing
systems. Int. J. Database Manage. Syst. DOI:
10.5121/ijdms.2010.2208

Arivazhagu, U.V. and S. Srinivasan, 2012. Cluster based
intelligent semantic query routing technique in peer
to peer network. Eur. J. Scientif. Res.

Brunkhorst, I. and H. Dhraief, 2007. Semantic caching in
schema-based p2p-networks. Proceedings of the
International Conference on Databases, Information
Systems and Peer-to-Peer Computing, Aug. 28-29,
Springer Berlin Heidelberg, Trondheim, Norway,
pp: 179-186. DOI: 10.1007/978-3-540-71661-7_17

Filali, I. and F. Huet, 2010. Dynamic TTL-based search
in unstructured peer-to-peer networks. Proceedings
of the 10th IEEE/ACM International Conference on
Cluster, Cloud and Grid Computing, May 17-20,
IEEE Xplore Press, Melbourne, Australia, pp: 438-
447. DOI: 10.1109/CCGRID.2010.66

Hefeeda, M., C.H. Hsu and K. Mokhtarian, 2011.
Design and evaluation of a proxy cache for peer-to-
peer traffic. IEEE Trans. Comput., 60: 964-977.
DOI: 10.1109/TC.2011.57

Santillan, C.G., L.C. Reyes, E.M. Conde, G.C. Valdez
and S.E. Schaeffer, 2010. A self-adaptive ant colony
system for semantic query routing problem in P2P
networks. Comput. Sist., 13: 433-448.

Zahariadis, T., F. Junqueira, L. Celetto, E. Quacchio and
S. Niccolini et al., 2010. Content aware searching,
caching and streaming. Proceedings of the 2nd
International Conference on Telecommunications
and Multimedia, Jul. 14-16, Chania, Crete, Greece,
pp: 263-270.

Zhao, J., P. Zhang, G. Cao and C.R. Das, 2010.
Cooperative caching in wireless p2p networks:
Design, implementation and evaluation. IEEE Trans.
Parallel Distributed Syst., 21: 229-241. DOI:
10.1109/TPDS.2009.50

