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Abstract: Problem statement: The synthesis of a command by the neural network has an excellent 
advantage over the classical one such as PID. This study presented a fast and accurate Wavelet Neural 
Network (WNN) approach for efficient controlling of an Active Magnetic Bearing (AMB) system. 
Approach: The proposed approach combined neural network with the wavelet theory. Wavelet theory 
may be exploited in deriving a good initialization for the neural network and thus improved 
convergence of the learning algorithm. Results: We tested two control systems based on three types of 
neural controllers: Multiplayer Perceptron (MLP) controller, RBF Neural Network (RBFNN) 
controller and WNN controller. The simulation results show that the proposed WNN controller 
provides better performance comparing with standard PID controller, MLP and RBFNN controllers. 
Conclusion: The proposed WNN approach was shown to be useful in controlling nonlinear dynamic 
mechanical system, such as the AMB system used in this study.  
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INTRODUCTION 
 
 The design of an AMB (Schweitzer, 1994) is 
expected to satisfy the static and dynamic requirements 
in the best possible way. The AMB has several 
advantages over traditional contact type bearing 
systems (Shafai et al., 1994; Knospe and Collins, 
1996). An AMB is used in modern industry where the 
mechanical systems reach their limits. The AMB 
systems permit the rotor to turn without any friction, 
also without any contact with the stator. They are 
widely used in applications that require high rotation 
speeds and minimum energy loss. Such systems operate 
at extreme environment conditions (very low or very 
high temperature degrees). The AMB systems are 
nonlinear dynamic systems.  
 Decentralized PID control systems are the 
industrial standard for most AMBs. However, these 
controllers lack systematic design tools and require 
extensive manual tuning to achieve desired 
performance for specific applications. A lot of 
researches about the application of robust control 
theory in the AMB digital control are reported 
(Sivrioglu and Nonami, 1999; Xu and Nonami, 2003).  

 Recently, a big effort has been made to elaborate a 
new technical command using a feed forward neural 
network. An adaptive control of a magnetic bearing by 
neural network has lead to better results. The 
advantages of such control could be illustrated by the 
following: A neural network has high immunity levels 
against the noise, high ability to learn from given 
examples toward the adaptation with new situations not 
previously known and high ability to overcome 
system’s modeling uncertainty. The neural network is 
also used as an efficient universal tool for function 
approximation (Haykin, 1998) and as an accurate 
control mechanism of nonlinear dynamic systems.  
 In general, the neural networks are directly used in 
dealing with an identification and control problem. 
Narendra and Parthasarathy (1990); Jin et al. (1995) 
and Wahab and Mohamed (2008) apply neural network 
in identification and control of nonlinear systems. 
 This study presents a comparative study between 
The WNN, the MLP and the RBFNN in controlling an 
AMB system. The goal of this study is to show that the 
control of the AMB by WNN provides an improvement 
of the response compared to the other control systems 
used PID, RBFNN or MLP.  
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The active magnetic bearing: There are two families 
of magnetic bearing: passive magnetic bearing and 
active magnetic bearing. The passive magnetic bearing 
contains a permanent magnet. In this type of magnetic 
bearing, we cannot modulate the current vector to 
control the electromagnetic forces. But in the AMB, we 
can easily modulate the current vector. 
 The bloc representing the model of the AMB 
system in the control system (Fig. 3) is the complete 
model of an active magnetic broche of small size. This 
broche is made up of two control plans. Every one 
includes two axes Y and Z ((Y1, Z1) and (Y2, Z2)). It 
is also made up of a stubborn that controls the X axis of 
a motor. This motor maintains the speed of rotation of 
the rotor (Fig. 1). The model of the broche takes into 
consideration the disturbances which will be applied to 
both plans of control. The mathematical equations of 
the model are developed in (Achkar et al., 2006). In 
fact, this model reflect the real behavior of the system.  
 In Fig. 2, we present the effect of the rotor 
unbalance (there is no alignment between the centre of 
gravity G of the rotor and the geometric centre O). This 
non-coincidence comes from the intrinsic disturbances. 
This effect is translated by the existence of δy and δz on 
every control plan. These disturbances will be taken 
into considerations in the development equations of the 
complete model. δy and δz are parameters having a 
great influence on the existence of the rotor unbalance. 
δy has an influence on the Y axis and δz has an 
influence on the Z axis. Centre of gravity of the rotor 
has equal distance of both control plans, it implicates 
that parameter δx = 0.  
 
Control system architecture: The bloc diagram of the 
system controlled by PID without neural network is 
shown in Fig. 3. In this study we tested two control 
methods. In the first method the neural network was 
added to the system controlled by PID by taking the 
current vector I

r
 as input and the vector Y

r
 as output 

(Fig. 4). In this figure the gain bloc represents the 
weight of the rotor. Upon adding Neural Network (NN) 
bloc to the system, the temporal responses of axes 
position, the response time, the time boarding improved 
even the overshoot reduced. The difference result 
vector (e

r
) (Eq. 1) between the desired positions vector 

dq
uur

and the system’s response vector sq
uur

becomes the 

input to the PID bloc. The corrected error vector (E
r

) is 
multiplied by the mass of the rotor to form the vector 

hV
uur

 (Eq. 2). The bloc is an State-Input Linearization 

bloc (Achkar et al., 2005). The output of this bloc 
controls the modeling bloc of an AMB system 

(Charara et al., 1996). The vectorsE
r

, e
r

,  hV
uur

 andI
r

are 

given by: 
 

d se q q= −
uur

r r
 (1) 

 

p d i

de
E k e k k edt

dt
= × + × + × ∫

uur
r r r

 (2) 

 

hV m * E=
r r

 (3) 

 

hI H * F H *(V Y)= = +
uurr r r

 (4) 

 
 The way of placing the NN bloc in the control 
system was to eliminate the error represented by Eq. 2. 
 

 
 
Fig. 1: Representing of AMB with asynchronous motor 
 

 
 
Fig. 2: Disturbed system plan control 
 

 
 
Fig. 3: Bloc diagram of the closed loop system without 

neural network 
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Fig. 4: Bloc diagram of the closed loop system with 

neural network (first method) 
 

 
 
Fig. 5: Bloc diagram of the closed loop system with 

neural network (second method) 
 
 The tF

r
in Eq. 5 demonstrates all the uncertainties 

of the system modeling (Charara et al., 1992; Charara 
and Caron, 1992): 
 

tI M(q) q h(q,q) F= × + +
uurrr r rr r

&& & &  (5)  

 
 As mentioned above, the neural network can 
overcome all the uncertainties of the modeling of non 
linear dynamic system. We can easily demonstrate that: 
 

p d i

de
m * k e k k edt F Y

dt

 
× + × + = −  

 
∫

uur
r rr r

 (6) 

 
 We can conclude that, in order to minimize the 
error represented by Eq. 2, it is sufficient to minimize 

the vector hV F Y= −
uur r r

. Then the goal of the NN bloc 

added to the control system is to minimize this vector 

hV
uur

. 

 The bloc diagram of the second control method is 
shown in Fig. 5. In this method the NN bloc is used to 
compute the different parameters kp, kd and ki of the 
PID controller. The major problem of the first method 
is the existence of oscillations in the axes’s responses. 
The origin of these oscillations comes from the using of 
non optimized parameters values kp, kd and ki of the 
PID controller. To eliminate the oscillations and add 
more stability to the system, it has been necessary to 
propose the use of second NN control method. The aim 
is to find the optimized PID parameters values by a 
systematic way. This effect was definitely explained in 
(Achkar, 2008; Mcheik et al., 2009). In our study, we 
placed the MLP by WNN first and then by RBFNN, in 

the two control methods. The training was online. The 
training of the MLP (Achkar et al., 2006) was also 
online and in two stages direct and backpropagation. 
 
Wavelet neural network and learning scheme: 
Wavelet neural network: Interest in wavelet analysis 
has been grown very rapidly in recent years. The 
wavelet theory is a rapidly developed branch of 
mathematics, which has offered very efficient 
algorithms for approximating, estimating, analyzing 
and compressing nonlinear functions. WNNs are widely 
applied to a variety of practical problems. Due to the 
similarity between discrete inverse wavelet transform 
and one-hidden-layer feedforward neural network (i.e., 
three-layer network), the idea of combining both 
wavelets and neural networks has been proposed by 
Zhang and Benveniste (1992) and Zhang (1997). A 
WNN is an adaptive discretization of the continuous 
inverse wavelet transform. It can also be considered as 
a one-hidden-layer feedforward neural network with 
wavelets as activation functions of its hidden neurons. 
 A bloc diagram of a multiple-input-multiple-output 
WNN is shown in Fig. 6. The expression of the kth 
(1≤k≤q) output of the WNN can be written as: 
 

h

k j ki i j
i 1

y (X ) w (X )
=

= = ψ∑  

 
where, q is the number of linear output neurons. 
 In practice, this equation is modified as follows: 
 

h
T

k j ki i j k j k
i 1

y (X ) w (X ) U X
=

= = ψ + + θ∑  

 
Or: 
 

ph

k j ki i j kl jl k
i 1 l 1

y (X ) w (X ) u x
= =

= = ψ + + θ∑ ∑  

 
Where: 
wki = The linear weight between  ith 

hidden neuron and kth output 
neuron  

uk = (uk1, uk2, ….ukp)
T  =  The vector that represents the 

direct linear connections 
between input layer and kth 
output neuron 

X j = (xj1, xj2, …xjp)
T  =  The jth input vector of WNN 

and h is the number of hidden 
neurons in the network 

θk   = The bias parameter of the kth 
linear output neuron 
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Fig. 6: Structure of wavelet neural network 
 
ψi(.)  = The wavelet activation 

function for the ith hidden 
neuron and it is calculated 
using the following equation 
(Oussar et al., 1998) 

 
h

jl il
i j

l 1 il

x b
(X )

a=

 −
ψ = φ  

 
∏  (9) 

 
where, i = 1,…,h 
ail =  the dilation parameter for the ith hidden neuron  
bil = the translation coefficient for the ith hidden 

neuron and the lth input neuron  
φ  =  the mother wavelet  
 
 In this study, the mother wavelet function φ has 
been chosen as (Zhang, 1997): 
 

20.5x(x) xe−φ = −  (10) 
 
Y = (y1, y2,…,yq) is the output vector of the WNN. All 
the network parameters (θk, ukl, wki, ail, bil) must be 
adapted on the training data. 
 
Learning algorithm: In this study the Levenberg-
Marquardt (LM) algorithm is used to train the WNN. 
The LM algorithm is based on the standard Newton’s 
method and has been shown to be a very powerful 
optimization technique (Ampazis and Perantonis, 2002; 
Hagan and Menhaj, 1994). In this application, LM 
algorithm is clearly superior to the classical BP 
(Backpropagation) and CG (Conjugate gradient) 
approaches. Training the WNN is to determine the α = 
{ θk, ukl, wki, ail, bil} (l = 1,…p, i = 1,…h, k = 1,…,q) 
such that the error function Enet(α) represented by Eq. 
11 is minimized (first control method): 
 

N
2

net j
j 1

E ( ) e
=

α =∑  (11) 

 
and: 
 

q
2

j hk
k 1

1
e ( j)

2 =

= ν∑  (12) 

N  = The number of training inputs  
νhk (j)  =  The kth element of the vector Vh = (vh1, 

vh2,…,vhq) corresponding to the jth training 
input  

 
 Here the variables to be optimized are the 
parameters in vector α. The error function  Enet(α) is 
minimized by refining these parameters using the LM 
algorithm. The nth correction of these parameters is 
described as: 
 

T 1 T
net(n 1) (n) (J J 1) J e−α + = α − + λ  (13) 

 
where enet = (e1, e2,…,eN)T . 1 is the identity matrix and 
λ is a constant parameter. The Jacobian matrix J is 
given by: 
 

1 1 1 1 1

k kl ki il il

2 2 2 2 2

k kl ki il il

N N N N N

k kl ki il il

e e e e e

u w b

e e e e e
J

u w b

e e e e e

u w b

 ∂ ∂ ∂ ∂ ∂
 ∂θ ∂ ∂ ∂α ∂ 
 ∂ ∂ ∂ ∂ ∂ =
 ∂θ ∂ ∂ ∂α ∂
 
∂ ∂ ∂ ∂ ∂ 
 ∂θ ∂ ∂ ∂α ∂ 

 

 
 The formulas for each element in the Jacobian 
matrix (calculation for the first control method) are: 
 

j

j
hk

k

j
hk jk

kl

j
hk i j

ki

qj
i j il hk kik 1

il il il

ej
il

il il

jl il
il

il

e
v ( j),

e
v ( j)x

u

e
v ( j) (X )

w

e 1 1
(X ) Z ( v ( j)w

b z

e
Z

b

x b
Z ,and i 1,...h,k 1,...q,l 1,...,p, j 1,...N

=

∂
= −

∂θ

∂
= −

∂

∂
= − ψ

∂

∂    
= ψ −   ∂ α   

∂∂
=

∂α ∂

−
= = = = =

α

∑
 

 
 Note that in the second control method the training 
process tends to minimize the error function 
represented by Eq. 11 but ej is given by: 
 

q
2

j k
k 1

1
e v ( j)

2 =

= ∑  (14) 

 
where, vk(j) is the kth element of the vector   V = (v1, 
v2,…,vq)  corresponding to the jth training input. 
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 A good initialization of the WNN parameters is 
very important. The good initialization yields a fast 
training procedure. In this study, we adopt the 
initialization proposed by Oussar et al. (1998). Zhang 
and Benveniste (1992) also used a similar but more 
complicated method for parameter initialization. 
 
RBF neural network and learning scheme: Figure 6 
shows the structure of a typical RBFNN (Haykin, 
1998), but the activation function for the hidden layer is 
replaced by a radial and symmetric Gaussian function 
(Eq. 16). The kth (1≤k≤p) output of the RBFNN is: 
 

h

k j ki i j
i 1

y (X ) w (X )
=

= φ∑  (15) 

 
2

j i

2
i

x T

i j(X ) e

−

σφ =  (16) 
 
Where: 
X j  =  The jth input vector of the 

RBFNN  
Ti = (ti1, ti2,…, t ip)

T  =  The center vector of the ith 
hidden neuron   

σi  =  The width parameter of the ith 
hidden neuron which is related 
to the spread of this function 
around its center  

 
 All the network parameters (wki, til, σi) must be 
adapted on the training data. The training procedure of 
the RBFNN consists in determining the centers of the 
hidden neurons by an unsupervised technique and the 
weights of connections of the hidden-output layer and 
the width parameters by a supervised technique. The fact 
that the performance of an RBFNN critically depends 
upon the chosen centers, we proposed to implement a 
non supervised standard algorithm the rival penalized 
competitive learning algorithm (Xu et al., 1993) to best 
determine the centers of the hidden activation functions. 
Training the RBFNN is to determine the α = {wki, til, 
σi} (l = 1,…p, i = 1,…h, k = 1,…,q) such that the error 
function E(α) represented by Eq. 11 is minimized. The 
training of the RBFNN was done by epoch, where 
every epoch contains N training inputs. After every 
epoch, the rival penalized algorithm is executed to 
choose the pertinent set of centers. Then the width 
parameters are calculated according to simple formula 
presented in (Hassoun, 1995). It is only a rough guide 
that provides a starting point for the width calculation 
by the training algorithm. At every training input, a 
gradient descent algorithm (Haykin, 1998) is used 
iteratively to train the weights of different connections 
and the width parameters in the opposite direction of 
the respective partial derivative of the error.  

 In the second control method the training process 
tends also to minimize the error function represented by 
Eq. 11 where ej is given by Eq. 14. 
 

MATERIALS AND METHODS 
 
 Figure 4 shows the bloc diagram of the first control 
system. In this case, the rotor unbalance is modeled 
with three components δx, δy and δz. These 
components represent the disturbance parameters of the 
centre of inertia compared to the centre of gravity. δy 
will influence the positions Y1 and Y2   and   δz   will  
influence  the  positions  Z1  and  Z2. The fact that the 
centre of gravity of the rotor has equal distance of both 
control plans, it implicates that parameter δx = 0. The 
control of the AMB by NN requires two steps: Learning 
process and online treatment. In this method, the number 
of inputs of each network is p = 10 and the number of 
output neurons is q = 5. In the Table 1, we list for each 
network: The number of hidden neurons, the error 
calculated at the end of the training process and the 
number of epochs needed in the training process. The 
learning parameter (η) used in the training process of 
the RBFNN is 0.01 (η = 0.01 for the MLP) and the 
constant parameter λ of the LM algorithm is 0.001. The 
number of examples per epoch is N = 501.  
  Figure 5 shows the bloc diagram of the second 
control method. The learning parameter (η) used in the 
training process of the RBFNN and MLP is 0.01 and 
the constant parameter λ of the LM algorithm is 0.001. 
The number of examples per epoch is also N = 501. In 
the Table 2, we list also for each network: The number 
of hidden neurons, the error calculated at the end of the 
training process and the number of epochs needed in 
the training procedure.  The number of inputs of each 
network is p = 10 and the output vector of the NN bloc 
is given by (q = 15): 
 

px pY1 pZ1 pY2 pZ2

dx dY1 dZ1 dY2 dZ2

T
ix iY1 iZ1 iY2 iZ2

Y (K ,K ,K ,K K ,

K ,K ,K ,K K ,

K K ,K ,K K )

=

 

 
Table 1: Optimized parameters of each network   
 No. of hidden  No. of 
Network neurons  epochs  Error 
MLP  8  28  6×10−6 
RBFNN  8  28  6×10−6 
WNN  8  28  4.2×10−6 
 
Table 2: Optimized parameters of each network 
 No. of hidden  No. of 
Network neurons epochs Error 
MLP  6  50  8×10−6 
RBFNN  6  50  9×10−6 
WNN  6  50  4×10−6 
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RESULTS 
 

 The execution of different simulations was done 
using the simulator MATLAB. Figure 7-12 show the 
simulation results of the first control method. Figure 7 
shows the error function as a function of the number of 
epochs for all the networks.  
 

 
 
Fig. 7: Error function of different networks 
 

 
 
Fig. 8: Response on the x axis 
 

 
 
Fig. 9: Response on the Z1 axis 

 After optimization of the parameters of MLP, 
RBFNN and WNN, a simulation giving the temporal 
answers according to time was made for the three axes 
(Fig. 8-12). Figure 13-18 shows the different simulation 
results of the second control method. 
 

 
 
Fig. 10: Response on the Z2 axis 
 

 
 
Fig. 11: Response on the Y1 axis 
 

 
 
Fig. 12: Response on the Y2 axis 



J. Computer Sci., 6 (12): 1457-1464, 2010 
 

1463 

 
 
Fig. 13: Error function of different networks 
 

 
 
Fig. 14: Response on the x axis 
 

 
 
Fig. 15: Response on the Z1 axis 
 

DISCUSSION 
 
 From the values in Table 1 and 2, it is obvious that 
the WNN consistently produces lower error value than 
the MLP and RBFNN, suggesting that the WNNs have 
better prediction accuracy and adaptability. In this 
study, we also find that the RBFNN doesn’t have better 
average performance than the MLP. Besides better 
accuracy and adaptability, the WNNs are easier to 
apply than the RBFNNs. 

 
 
Fig. 16: Response on the Z2 axis 
  

 
 
Fig. 17: Response on the Y1 axis 
 

 
 
Fig. 18: Response on the Y2 axis 
 
 To apply the RBFNN, in addition to specifying the 
number of radial basis functions (hidden neurons), 
some additional algorithms are needed to determine the 
center and width coefficient of each radial basis 
function. Simulation results have shown that the WNN 
controller has a good initialization of its parameters 
during the learning process and then a faster learning 
speed with a smaller error. From Fig. 7-18 it can be 
seen that the WNN control system gives better results 
in comparison with PID, MLP or RBFNN control 
systems. The WNN control scheme is then more 
suitable to control the AMB system under the possible 
occurrence of uncertainties. 
 

CONCLUSION 
 
 In this study, we presented the effectiveness of a 
neural command applicable on an AMB system. The 
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fact that this system cannot be stable in the three space 
directions, the control of the rotor position was 
necessary. We tested two control systems based on 
three types of neural controllers. The simulation results 
showed that the WNN controller provides a better 
performance comparing with standard PID controller, 
MLP and RBFNN controllers. As a perspective work, 
the synthesis of a command by WNN according to the 
two methods previously mentioned may be done in real 
time on an experimental platform. The simulated results 
and the experiment ones may be compared. The 
application of the WNN command in real time permit 
us to eliminate the effect of the rotor unbalance and the 
reduction of the energy consummation with 
conservation of the high performance speed rotation. 
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