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Abstract: Problem statement: The synthesis of a command by the neural netwoskamaexcellent
advantage over the classical one such as PID.stinily presented a fast and accurate Wavelet Neural
Network (WNN) approach for efficient controlling a@n Active Magnetic Bearing (AMB) system.
Approach: The proposed approach combined neural network thighwavelet theory. Wavelet theory
may be exploited in deriving a good initializatidor the neural network and thus improved
convergence of the learning algorithResults: We tested two control systems based on three types
neural controllers: Multiplayer Perceptron (MLP) ntwller, RBF Neural Network (RBFNN)
controller and WNN controllerThe simulation results show that the proposed WNiMtroller
provides better performance comparing with stand&idl controller, MLP and RBFNN controllers.
Conclusion: The proposed WNN approach was shown to be usefabitrolling nonlinear dynamic
mechanical system, such as the AMB system usddsistudy.

Key words:. Active magnetic bearing system, rotor unbalanceyeled neural network, radial basis
function, LM algorithm, hidden neurons, nonlinegndmic, oscillations

INTRODUCTION Recently, a big effort has been made to elabarate
new technical command using a feed forward neural
The design of an AMB (Schweitzer, 1994) is network. An adaptive control of a magnetic beafyg
expected to satisfy the static and dynamic requeréen  neural network has lead to better results. The
in the best possible way. The AMB has severaladvantages of such control could be illustratedthsy
advantages over traditional contact type bearindollowing: A neural network has high immunity lesel
systems (Shafaet al., 1994; Knospe and Collins, against the noise, high ability to learn from given
1996). An AMB is used in modern industry where theexamples toward the adaptation with new situatiasts
mechanical systems reach their limits. The AMBpreviously known and high ability to overcome
systems permit the rotor to turn without any focti  system’s modeling uncertainty. The neural netwark i
also without any contact with the stator. They arealso used as an efficient universal tool for fummti
widely used in applications that require high rotat approximation (Haykin, 1998) and as an accurate
speeds and minimum energy loss. Such systems eperatontrol mechanism of nonlinear dynamic systems.
at extreme environment conditions (very low or very In general, the neural networks are directly used
high temperature degrees). The AMB systems aréealing with an identification and control problem.
nonlinear dynamic systems. Narendra and Parthasarathy (1990); diral. (1995)
Decentralized PID control systems are theand Wahab and Mohamed (2008) apply neural network
industrial standard for most AMBs. However, thesein identification and control of nonlinear systems.
controllers lack systematic design tools and rexuir This study presents a comparative study between
extensive manual tuning to achieve desiredThe WNN, the MLP and the RBFNN in controlling an
performance for specific applications. A lot of AMB system. The goal of this study is to show ttiest
researches about the application of robust contraotontrol of the AMB by WNN provides an improvement
theory in the AMB digital control are reported of the response compared to the other control syste
(Sivrioglu and Nonami, 1999; Xu and Nonami, 2003). used PID, RBFNN or MLP.
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The active magnetic bearing: There are two families (Chararaet al., 1996). The vectoi,
of magnetic bearingpassive magnetic bearing and
active magnetic bearing. The passive magnetic hgari
contains a permanent magnet. In this type of magnet = _.

bearing, we cannot modulate the current vector tof=% ~ G4 1)
control the electromagnetic forces. But in the AME
can easily modulate the current vector.

.V, andi are
given by:

The bloc representing the model of the AMB E=k, xe+kdx*+|ﬂ [eat (2)
system in the control system (Fig. 3) is the coteple
model of an active magnetic broche of small sizésT  _ g 3)
h

broche is made up of two control plans. Every one
includes two axes Y and Z ((Y1, Z1) and (Y2, Z3)).

is also made up of a stubborn that controls theiXaf | =H*F =H*(V, +Y) (4)
a motor. This motor maintains the speed of rotatibn
the rotor (Fig. 1). The model of the broche tak@e i The way of placing the NN bloc in the control

consideration the disturbances which will be agptie  system was to eliminate the error represented b2 Eq
both plans of control. The mathematical equatiohs o
the model are developed in (Achkeral., 2006). In #
fact, this model reflect the real behavior of tlgetem. i
In Fig. 2, we present the effect of the rotor
unbalance (there is no alignment between the cerfitre
gravity G of the rotor and the geometric centre This
non-coincidence comes from the intrinsic disturlesnc
This effect is translated by the existencéyfnddz on
every control plan. These disturbances will be ake
into considerations in the development equationthef
complete modeldy and 6z are parameters having a
great influence on the existence of the rotor uanize.
dy has an influence on the Y axis akd has an
influence on the Z axis. Centre of gravity of tluor
has equal distance of both control plans, it ingiés
that parametesx = 0.

_~ Inertia axes

Geometric axes

Fig. 1: Representing of AMB with asynchronous motor

Control system architecture: The bloc diagram of the
system controlled by PID without neural network is
shown in Fig. 3. In this study we tested two coantro
methods. In the first method the neural network was
added to the system controlled by PID by taking the
current vectori as input and the vector as output
(Fig. 4). In this figure the gain bloc represent® t
weight of the rotor. Upon adding Neural Network (NN
bloc to the system, the temporal responses of axes ->—
position, the response time, the time boarding owed

even the overshoot reduced. The difference resulig. 2: Disturbed system plan control
vector (€) (Eg. 1) between the desired positions vector

g, and the system’s response veclmsrbecomeﬂs the +<: D ’ . Model—y—s
input to the PID bloc. The corrected error vectar) (s Qa Conin 4
multiplied by the mass of the rotor to form the teec T

VT (Eq. 2). The bloc is an State-Input Linearization

bloc (Achkar et al., 2005). The output of this bloc Fig. 3: Bloc diagram of the closed loop system wiith
controls the modeling bloc of an AMB system neural network
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the two control methods. The training was onlinke T
Y training of the MLP (Achkaret al., 2006) was also
- online and in two stages direct and backpropagation
Model|

: o ' q :
T Gain v, F I ) Wavelet neural network and lear ning scheme:

Wavelet neural network: Interest in wavelet analysis
. _ . has been grown very rapidly in recent years. The
Fig. 4: Bloc diagram of_ the closed loop system with, 4y elet theory is a rapidly developed branch of
neural network (first method) mathematics, which has offered very efficient
algorithms for approximating, estimating, analyzing
and compressing nonlinear functions. WNNs are widel
applied to a variety of practical problems. Duethe
similarity between discrete inverse wavelet tramsfo
and one-hidden-layer feedforward neural networ,(i.
three-layer network), the idea of combining both
wavelets and neural networks has been proposed by
Zhang and Benveniste (1992) and Zhang (1997). A
WNN is an adaptive discretization of the continuous
L __ inverse wavelet transform. It can also be consilia®
The F in Eq. 5 demonstrates all the uncertaintiesy one-hidden-layer feedforward neural network with
of the system modeling (Charagnal., 1992; Charara wavelets as activation functions of its hidden oesr

Fig. 5: Bloc diagram of the closed loop system with
neural network (second method)

and Caron, 1992): A bloc diagram of a multiple-input-multiple-output
WNN is shown in Fig. 6. The expression of the kth
T =M(q) xq + E(a,a)+f (5) (1=k<q) output of the WNN can be written as:

h
As mentioned above, the neural network cany, =(X,) =Y w,y (X;)
overcome all the uncertainties of the modeling of n =

linear dynamic system. We can easily demonstrate th . .
where, q is the number of linear output neurons.

de o In practice, this equation is modified as follows:
m*[kPXé+kdX+kijédt]=F—Y (6)
dt .
Yy :(Xj) :sziwi (Xj) +UkTXj +6
i=1

We can conclude that, in order to minimize the
error represented by Eq. 2, it is sufficient to imize
the vectow, =F-Y. Then the goal of the NN bloc
added to the control system is to minimize thisteec h P
v/ yk:(xj)zzwkiwi (xj)+zuklle +Q<
V, . i1 =1
The bloc diagram of the second control method is
shown in Fig. 5. In this method the NN bloc is used Where:

compute the different parameters ky and k of the  wy = The linear weight between ith
PID controller. The major problem of the first madh hidden neuron and kth output
is the existence of oscillations in the axes’s oasps. neuron

The origin of these oscillations comes from thengof U = (U, U, ....u(p)T = The vector that represents the
non optimized parameters valueg kg and k of the direct linear connections
PID controller. To eliminate the oscillations andda between input layer and kth
more stability to the system, it has been necesgary output neuron

propose the use of second NN control method. Time ai X; = (X1, X2, --.,)" = The jth input vector of WNN
is to find the optimized PID parameters values by a and h is the number of hidden
systematic way. This effect was definitely explaine neurons in the network
(Achkar, 2008; Mcheilet al., 2009). In our study, we 8, = The bias parameter of the kth
placed the MLP by WNN first and then by RBFNN, in linear output neuron
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N = The number of training inputs
Vik () = The kth element of the vector,\& (v,
Vha,...,Vhg) COrresponding to the jth training

input
e Y. Here the variables to be optimized are the
Topniuger @ Won  Outputlayer parameters in vectar. The error function g{a) is
Hidden layer minimized by refining these parameters using the LM
algorithm. The nth correction of these parameters i
Fig. 6: Structure of wavelet neural network described as:
wi(.) = The wavelet activation a(n+L=a(n)-J H*A Y J g (13)

function for the ith hidden
neuron and it is calculated where g« = (e, &,...,&)" . 1 is the identity matrix and
using the following equation A is a constant parameter. The Jacobian matrix J is

(Oussatet al., 1998) given by:
w(x)-”q{ bJ (9) % 0g 0g 0g de]
9, du, dw, aa, ab,
where,i=1,...,h j=| 98 9& 06 E o8
a = the dilation parameter for the ith hidden neuron 06, ou, ow, Odo; 0h
b, = the translation coefficient for the ith hidden de, 0de, dg OJg O0¢g
neuron and the Ith input neuron 2, du, ow, oq, T%
¢ = the mother wavelet -
In this study, the mother wavelet functignhas The formulas for each element in the Jacobian
been chosen as (Zhang, 1997): matrix (calculation for the first control methodea
X) = —xe % 10 de,
o) (10) aT__th(l)
Y = (Vi Yar.-.,Yg) is the output vector of the WNN. All
the network parameter®,( uq, W, a, by) must be B=—th(i)xjk
adapted on the training data. ou,

Learning algorithm: In this study the Levenberg- o8, =V, (YW (X))

Marquardt (LM) algorithm is used to train the WNN. Wk

The LM algorithm is based on the standard Newton'sde; _( 1. W (X)) 15 (X Vo (W
method and has been shown to be a very powerfubb, (o, /™' "' ! ek LW
optimization technique (Ampazis and Perantonis,2200 P
Hagan and Menhaj, 1994). In this application, LM E:iz

algorithm is clearly superior to the classical BP da, db,

(Backpropagation) and CG (Conjugate gradient) x, —b, _ _
approaches. Training the WNN is to determinedhe % = x .andi=1..hlke 1..9% 1...pg 1..
{6, Us, Wi, a, B} (1=1,...p, i = 1,...h, k = 1,...,q) '
such that the error function,&a) represented by Eq. Note that in the second control method the trginin
11 is minimized (first control method): process tends to minimize the error function
N represented by Eq. 11 byisegiven by:
Enet(0) = _lee?- (11) q
| & =32 %0 (14)
and: k=1

=232 () (12) where, y(j) is the kth element of the vector V = (v
=t J Vy,...,Vg) corresponding to the jth training input.
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A good initialization of the WNN parameters is In the second control method the training process
very important. The good initialization yields asfa tends also to minimize the error function represeiity
training procedure. In this study, we adopt theEq. 11 where;és given by Eq. 14.
initialization proposed by Oussat al. (1998). Zhang
and Benveniste (1992) also used a similar but more MATERIALSAND METHODS
complicated method for parameter initialization.

Figure 4 shows the bloc diagram of the first cointr
system. In this case, the rotor unbalance is mddele
with three componentséx, 8y and 6z. These
components represent the disturbance parametéhe of
centre of inertia compared to the centre of gradty

RBF neural network and learning scheme: Figure 6
shows the structure of a typical RBFNN (Haykin,
1998), but the activation function for the hiddegdr is
replaced by a radial and symmetric Gaussian functio

(Eq. 16). The kth (&k<p) output of the RBFNN is: will influence the positions Y1 and,Y and &z will
. influence the positions ;Zand 2. The fact that the

y(X) =Y w,q(X)) (15)  centre of gravity of the rotor has equal distanteath
A= control plans, it implicates that parameéer = 0. The

control of the AMB by NN requires two steps: Leami

- | process and online treatment. In this method, theber
@(X)=e ° (16)  of inputs of each network is p = 10 and the numfer
: output neurons is g = 5. In the Table 1, we listdach
Where: network: The number of hidden neurons, the error
X =The jth input vector of the calculated at the end of the training process dmed t
! RBENN number of epochs needed in the training process. Th

T = (b, oo, tip)T = The center vector of the ith learning pare@metemﬁ u_sed in the training process of
hidden neuron the RBFNN is 0.01r{ = 0.01 for the MLP) and the

o, = The width parameter of the ith constant parameter of the LM algorithm is 0.001. The
hidden neuron which is related NUmMber of examples per epoch is N = 501.
to the spread of this function Figure 5 shows the ploc diagram of thg second
around its center control method. The learning parametgy ¢sed in the
training process of the RBFNN and MLP is 0.01 and
All the networl_< parameters v i, _oi) must be the constant paramet&rof the LM algorithm is 0.001.
adapted on the training data. The training procediir The number of examples per epoch is also N = 501. |
the RBFNN consists in determining the centers ef th the Table 2, we list also for each network: The hem
hidden neurons by an unsupervised technique and thg hidden neurons, the error calculated at theddritie
weights of connections of the hidden-output layed a training process and the number of epochs needed in
the width parameters by a supervised techniquefddie e training procedure. The number of inputs afhea

that the performance of an RBFNN criticall_y dependshetwork is p = 10 and the output vector of the Nch
upon the chosen centers, we proposed to implement i@given by (q = 15):

non supervised standard algorithm the rival peedliz

competitive learning algorithm (Xet al., 1993) to best

determine the centers of the hidden activationtions. Y = (K. K, K 7 K K 75
Training the RBFNN is to determine tle= {w,;, t,

o}(=1,.p,i=1,.h k=1,..,q) such that the @rr KoK gl e okl e
function E@) represented by Eq. 11 is minimized. The
training of the RBFNN was done by epoch, where
every epoch contains N training inputs. After everyTable 1: Optimized parameters of each network

KixK iy K iz1 K iYZK iZZ) T

epoch, the rival penalized algorithm is executed tQ .o or ﬁgufgﬁs'dde” N8862LS Error
choose the pertinent set of centers. Then the widtiyp 3 58 <10
parameters are calculated according to simple ftarmu RBFNN 8 28 6x10
presented in (Hassoun, 1995). It is only a rougidegu WNN 8 28 4.2x10
that prowd.e.s a Start'ng point for the W'P't_h ca;imdn Table 2: Optimized parameters of each network

by the training algorithm. At every training inpua, No. of hidden No. of

gradient descent algorithm (Haykin, 1998) is usedNetwork neurons epochs Error
iteratively to train the weights of different comtiens ‘mLp 6 50 8x10
and the width parameters in the opposite direcibn RBFNN 6 50 9x17
the respective partial derivative of the error. WNN 6 50 4x10
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RESULTS After optimization of the parameters of MLP,
RBFNN and WNN, a simulation giving the temporal
The execution of different simulations was doneanswers according to time was made for the thres ax
using the simulator MATLAB. Figure 7-12 show the (Fig. 8-12). Figure 13-18 shows the different siatialn
simulation results of the first control method. g 7  results of the second control method.
shows the error function as a function of the nundie
epochs for all the networks. 3 X107

Desired

Error function
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To apply the RBFNN, in addition to specifying the
number of radial basis functions (hidden neurons),
some additional algorithms are needed to deterthi@e
center and width coefficient of each radial basis
function. Simulation results have shown that the NVN
controller has a good initialization of its parasrst
during the learning process and then a faster ilegrn
speed with a smaller error. From Fig. 7-18 it can b
seen that the WNN control system gives better tesul
) o ) in comparison with PID, MLP or RBFNN control
From the values in Table 1 and 2, it is obviows th systems. The WNN control scheme is then more

the WNN consistently produces lower error valuentha gyjtable to control the AMB system under the pdssib
the MLP and RBFNN, suggesting that the WNNs haVQ)Ccurrence of uncertainties.

better prediction accuracy and adaptability. Insthi

study, we also find that the RBFNN doesn’t havedret CONCLUSION

average performance than the MLP. Besides better

accuracy and adaptability, the WNNs are easier to In this study, we presented the effectiveness of a
apply than the RBFNNs. neural command applicable on an AMB system. The
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fact that this system cannot be stable in the thpeee
directions, the control of the rotor position was

necessary. We tested two control systems based on

three types of neural controllers. The simulatiesuits

showed that the WNN controller provides a better
performance comparing with standard PID controller,

MLP and RBFNN controllers. As a perspective work,
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