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ABSTRACT 

No non-human reservoirs for smallpox- and polio-viruses has contributed to the success of worldwide 

eradication of smallpox and a significant control of poliomyelitis. Most emerging and re-emerging viruses 

including SARS Coronavirus (SARS-CoV), have animal reservoirs and therefore,they impose a constant 

threat of host jump leading tooutbreaksin humans. It is desirable to be ready for control of infections that are 

caused by zoonotic pathogens, even after an outbreak has ended. This literature review is a compilation of 

advances made so far for diagnosis and treatment of SARS. 
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1. INTRODUCTION 

 According to the World Health Organization, there 

were 8,098 reported cases and 774 deaths worldwide 

during the Severe Acute Respiratory Syndrome (SARS) 

outbreak in2002-2003. First case of SARS appeared in 

November 2002 in Guangdong Province, China. By 

April2003, it had spread to around 30 countries 

including, Vietnam, Hong Kong, Singapore, Taiwan, 

India, Canada and United States of America.  

 On 24th March 2003, Center for Disease Controland 

Prevention, Atlanta, USA announced that the possible 

etiologic agent of SARS is either a human 

metapneumovirus or a previously unrecognized 

coronavirus. Shortly, it was confirmed to be a novel 

coronavirus based on electron microscopy, 

immunostaining, seroconversion as well as RT-PCR and 

sequencing of polymerase gene fragment (Drosten et al., 

2003; Ksiazek et al., 2003). Availability and 

affordability of DNA sequencing facilitated genotyping 

of several isolates of SARS-CoV. By 29th April 2003, 

complete genome sequences of SARS-CoVisolates, 

Tor2, Urbani, HKU-39849, CUHK-W1 and KYK were 

posted on the web. Facilities at the BCCA Genome 

Sciences Centre in Vancouver, Centers for Disease 

Control and Prevention in Atlanta, University of Hong 

Kong, Chinese University of Hong Kong, Genome 

Institute of Singapore and Beijing Genomics Institute 

were involved in thisseminal work. Many others are 

olates weresequencedand compared subsequently. The 

information obtained from such analyses was of 

epidemiologic significance. One, it revealed mutability 

of SARS-CoV, which, would have implications in 

vaccine development (Ruan et al., 2003; Tsui et al., 

2003). Second, it led to the understanding that the 

organization of SARS-CoV genome is similar to the 

other coronaviruses although, at the primary sequence 

level, they were only distantly related (Rota et al., 2003). 

This ruled out the possibility of simple recombination 

event(s) among existing coronaviruses being responsible 

for the emergence of SARS-CoV. It was also indicative 

of the fact that this virus might have originated from 

animals. In fact, virus isolated from SARS patientswas 

able to cause a similar disease in cynomolgus macaques 

(Fouchier et al., 2003). Scientists began a search for the 

source of the SARS-CoV by scanning wild and domestic 

animals and indeed foundSARS virus-like coronaviruses 

from Himalayan palm civets and a raccoon dog found in 

a market in Guangdong, China. From sequence analysis, 

it was apparent that the viruses of human and civet origin 

shared more than 99% homology. However, 

phylogenetic analysis of S proteins, placed viruses of 
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human and civet origin in separate clusters. Also, the 

animalisolates contained a 29-nucleotide sequence in 

ORF 8 region that was absent in most human isolates 

(Guan et al., 2003).These analyses and the fact that palm 

civets did not show a widespread infection indicated that 

palm civetsmight not have been the natural reservoir host 

for SARS-CoV. Instead, they may have only served a 

medium to facilitate animal-to-human transition. This led 

to further searches inother animals including bats, 

rodents and monkeys for SARS-CoV host. SARS-CoV 

like viruses were found in bats. Sequence analysis 

showed that there was a significant homology between 

bat and human viruses. Interestingly, the 29-nucleotides 

in the ORF-8 was present in the virus of bat origin and 

the most variability between the two was found to be in 

the S1 region of spike protein, which is responsible for 

receptor binding (Li et al., 2005a). Findings from all 

such studies were put together to establish origin of 

SARS-CoV. The most accepted theory is that bats are the 

natural reservoirs of SARS-CoV. Civets and other wild 

animals came in contact with SARS-CoV infected bats in 

a market, where theyacquired the virus. It evolved in 

these animals before hoping to animals. Major species- 

specific determinants are traced to the viral S protein. 

 Even after the outbreakcame under control, 

scientists around the world continued to treat the 

situationas urgent and have made significant advances in 

understanding the SARS-CoV biology, developing 

diagnostics, identifying a number of drug targets, 

potential antivirals, tools for vaccines and 

immunotherapy for SARS. 

1.1. Diagnostics 

 Early and sensitive detection of SARS-CoV is 

important not only for treatment but also for control of 

disease spread. Initially, clinical symptoms and 

epidemiologic linkage were diagnostics for SARS 

followed by serologic testing, viral culture and PCR-

based methods (Wu et al., 2003; Yam et al., 2003). Now, 

reagents are also available for Nucleocapsid (N) protein 

and Spike (S) protein detection (Che et al., 2004; 

Sunwoo et al., 2012). 

1.2. Antivirals 

 During the outbreak, spread of SARS-CoV was 

predominantly controlled by surveillance and quarantine. 

Agents that were usually adaptedfor treatment were 

ribavirin, corticosteroids, human interferons (IFN-β and 

IFN-γ) and convalescent plasma (Barnard et al., 2004; 

He et al., 2004; Keyaerts et al., 2004; Wu et al., 2004a; 

Cinatl et al., 2005; Groneberg et al., 2005; Lai, 2005; 

Morgenstern et al., 2005; Saijo et al., 2005; Lau et al., 

2006; Stockman et al., 2006). However, a systematic 

review of clinical trials and in vitro studies revealed that 

although agents such as ribavirin, corticosteroids, 

lopinavir and type I interferon showed inhibition of 

SARS-CoV in tissue culture, their usefulness was 

inconclusive in most patient studies (Stockman et al., 

2006). Some studies have in fact shown possible harm 

from some of them (Lau et al., 2006; Stockman et al., 

2006). Since then, several other small moleculeshave 

been investigated for effect on SARS-CoV in vitro and 

are listed with their observed effects in Table 1. In 

addition, progress made in understanding cellular and 

biochemical processes of the virus has allowed the 

identification of several novel antiviral targets and 

molecules to inhibit them. 

1.3. Entry Inhibitors 

 Three important steps for SARS viral entry into the 

host cell include its binding to the host cells through an 

interaction between viral spike protein (S protein) and its 

receptor, the angiotensin-converting enzyme 2 (ACE 2) 

followed by conformational changes in the S protein and 

its activation by proteolysis. Agents that target these 

steps have been identified and analyzed for their 

inhibitory effects on SARS-CoV entry. Classes of entry 

inhibitor include siRNA to spike protein gene (Qin et al., 

2004), peptides or recombinant proteins derived from S 

protein (Ni et al., 2005; Sainz et al., 2006; Ujike et al., 

2008; Struck et al., 2012) or ACE2 (Imai et al., 2005; 

Han et al., 2006), small molecules that bind S protein 

(Yi et al., 2004) and inhibitors of cellular protease 

(Simmons et al., 2005; Wang et al., 2007; Zhou et al., 

2011). In addition, TNF-α Converting Enzyme (TACE) 

and lactoferrin bound to heparin sulfate proteoglycans 

have also been identified as targets for inhibition of 

viral entry (Haga et al., 2010; Lang et al., 2011).  

1.4. Viral Protease Inhibitors 

 SARS viral replicase polyprotein is 
proteolytically processed by the viral proteases to 
generate functional enzymes. Owing to their essential 
role, 3CL protease, the main protease and the Papain-
Like Protease (PLP2) of SARS-CoV are considered 
important drug targets. Based on homology modeling 
using crystal structures for human coronavirus and an 
inhibitor complex of porcine coronavirus, Anand et al. 
(2003) proposed that rhinovirus 3C protease inhibitors 
might be modified for inhibiting SARS protease 
(Anand et al., 2003; Regnier et al., 2009).   
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Table 1. Effect of antiviral agents on SARS-CoV in vitro 

Agent Major effects reported 

Calpain A class of cellular cysteine proteinases that inhibited  

 SARS virus yield with an effective concentration in micro  

 molar range (Barnard et al., 2004) 

Niclosamide An existing antihelminthetic drug that abolished viral antigen  

 synthesis at concentration of 1.56 uM (Wu et al., 2004b) 

Aurintricarboxylic Acid (ATA) ATA is known to inhibit protein and nucleic acid interaction.  

 It was reported to be 10 or 100 times more potent inhibitor of  

 SARS-CoV than IFN-∝ and IFN-β, respectively (He et al., 2004) 

Chloroquine A clinically approved drug for malaria was effective with an IC50 in  

 lower µM range (Keyaerts et al., 2004). In addition to its effect  

 through elevation of endosomal pH, chloroquine seems to interfere with  

 terminal glycosylation of ACE2, the the receptor for SARS-CoV  

 (Vincent et al., 2005) 

Nitric oxide Nitric oxide donor S-nitroso-N-acetylpenicillamine inhibited SARS-CoV by  

 2 logs at 100 µM (Akerstrom et al., 2005) 

Hydrocortisone Only at very high concentrations, hydrocortisone showed a moderate effect on  

 chemokine production by SARS-CoV (Cinatl et al., 2005) 

Procyanidins and butanol  A moderate inhibitory activity in wild-type SARS-CoV and HIV/SARS-CoV  

extracts of cinnamomi cortex pseudovirus assay is reported (Zhuang and Jiang, 2009) 

Synthetic peptides outside of  S protein fragments spanning sequence variation hotspots reduced 

spike protein heptad SARS-CoV infectivity significantly (Guan et al., 2003) 

Dipeptide glutaminyl  An inhibition with EC50 value in low µmolar range is  

fluoromethyl ketone observed (Zhang et al., 2008) 

Cyclopentenyl carbocyclic  1,2,3-trizole analogs which, exhibited an antiviral activity with an  

nucleosides EC50 of21 µM or 47 µM (Cho and Bernard, 2006) 

Indomethacin Inhibits viral RNA synthesis with > 1,000 fold reduction in  

 CCo-V infected dogs (Amici et al., 2006) 

Phenanthroindolizines Tylophorine compounds inhibited SARS-CoV with  

 EC50 in nM range (Yang et al., 2010) 

Emodin Emodin is shown to inhibit SARS-CoV via its ion channel protein,  

 3a (Schwarz and Wang, 2011) 

Glycyrrhizin Glycyrrhizin inhibits SARS but some of its derivatives showed reduced  

 specificity (Hoever and Baltina, 2005) 

Antisense Peptide Nucleic PNAs that were targeted to interfere with programmed -1 ribosomal shifting and  

Acids (PNAs) fused to cell penetrating peptides resulted in inhibition of SARS-CoV   

 replication with IC50 of 4.4 µM (Ahn et al., 2011) 

Antisense morpholino Oligomers targeted to Transcription-Regulatory Sequence (TRS) are reported to  

oligomers show a low inhibitory activity against SARS-CoV (Neuman et al., 2005) 

SiRNA siRNAs for various targets including, interferons, leader sequence or N protein  

 have been tested (Li et al., 2005a; 2005b; Wu and Huang, 2005;  

 Zhao and Qin, 2005; Tang and Li, 2008)  

 
Homology modeling also formed a basis for designing 
mechanism-based irreversible inhibitors of 3CLpro with 
an activity of wide spectrum across coronaviruses   
(Yang et al., 2005a). Besides, several groups have 
identified a number of inhibitors of 3CLpro using a 
variety of approaches. Virtual screening (Plewczynski et al., 
2007; Mukherjee et al., 2008; 2011; Nguyen et al., 2011) or 
a high-throughput screening of small molecule libraries 
have identified inhibitorsincluding an anti-HIV agent and 
serotonin antagonist, cinanserin (Blanchard et al., 2004; 
Kao et al., 2004; Wu et al., 2004a; Chen et al., 2005). Other 

3CL protease inhibitors identified so far belongto categories 
such as plant derived phenolic or flavonoid compounds 
(Lin et al., 2005; Nguyen et al., 2012), active site, non-
active site or competitive inhibitors (Kaeppler et al., 2005; 
Lee et al., 2005; Du et al., 2007; Ryu et al., 2010), 
ketones or ester based inhibitors (Goetz et al., 2007; 
Zhang et al., 2007; Ghosh et al., 2008; Shao et al., 2008; 
Verschueren et al., 2008; Zhang et al., 2008), modified 
peptidomimetic inhibitors (Ghosh et al., 2007), metal 
conjugated inhibitors (Lee et al., 2007; 2009), 
common inhibitors of Corona and Picornaviruses    
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(Kuo et al., 2009) and pyrimidines (Ramajayam et al., 
2010). Protease inhibitors have also been reviewed 
elsewhere (Liang, 2006; Ramajayam et al., 2011). 
 In addition to its role in proteolytic processing of the 

viral polymerase, PLP2 is also involved in host evasion. 

Some of the first identified small molecule lead 

compounds for inhibition of PLP2 were thiopurine 

analogs (Chou et al., 2008; Chen et al., 2009). Besides, 

Ratia et al. (2008) have synthetically evolved a 

noncovalent inhibitor demonstrating an IC50 of around 

15 µM in a cell based SARS-CoV replication assay 

(Ratia et al., 2008). Dooley et al. (2006) and Ghosh et al. 

(2009) have identified small molecules with 

EC50valuesin lower micromolar range (Dooley et al., 

2006; Ghosh et al., 2009). Recently, a yeast-based assay 

for measurement of papain-like protease activity that is 

suitable for screening of inhibitors was established 

(Frieman et al., 2011).  

1.5. Helicase Inhibitors 

 Bismuth complexes and RNA aptamers have been 

shown to inhibit activity of SARS-CoV helicase  

(Yang et al., 2007; Jang et al., 2008; Adedeji et al., 

2012; Keum and Jeong, 2012). 

1.6. Host Pathway Inhibitors 

 Although, inhibitors of viral proteins have been used 

for treating some other viral infections, asignificant issue 

with targeting the viral proteins has been the 

development of drug resistant virus. This is likely due to 

the selection of mutant virus under drug pressure. 

Inhibitors of host systems, including immune and 

housekeeping, that may be critical for virus survival are 

alternatives that are worth an investigation. Cyclosporine 

and FK506 have emerged as examples of such inhibitors 

(De Wilde et al., 2011; Pfefferle et al., 2011; Carbajo-

Lozoya et al., 2012). Other host pathway proteinsthat are 

potential antiviral drug targets have been identified 

(Ma et al., 2010; Bhardwaj et al., 2012; Millet et al., 

2012; Smith et al., 2012; Zhao et al., 2012). 

1.7. Vaccines and Immunotherapy for SARS-CoV 

 Coronaviruses cause significant infections in 

humans and animals. Although, no vaccines against 

coronaviruses are available at this time for use in human, 

they are produced for use in animals (Olsen et al., 1993; 

Anton et al., 1996). A need for prophylactic treatment 

ora vaccine is underscored by what happened during the 

2002-2003 SARS outbreak. In the Vietnamese outbreak 

of SARS, all patients who died apart from the index 

patient were healthcare professionals including a WHO 

scientist, Dr. Carlo Urbani. It was Dr. Urbani’s initiatives 

that led to the successful containment of the disease in 

Hanoi. He died of SARS on March 29th 2003.   

 Roberts et al. (2008) and Roper and Rehm (2009) 

have reviewed the SARS animal models and the initial 

vaccine studies in great detail (Roberts et al., 2008; 

Roper and Rehm, 2009). Several animal models that 

have been developed for SARS vaccine studies include 

mice, African green monkey, ferrets, macaques, hamsters 

and Chinese masked palm civet. Multiple labshave 

demonstrated the feasibility of various types of vaccines 

(Table 2). However, vaccine efficacy and safety issues 

are still being investigated (Table 2). Studies related to 

SARS vaccinehave taught us several lessons about 

pathogenesis and host responses to SARS-CoV, in 

addition to unraveling the need for caution. With 

certain experimental vaccines, such as the viral vector 

based ones, immunopathology and redirection of the 

viral vector to brain was reported (Czub et al., 2005; 

Deming et al., 2006; Kam et al., 2007; Jaume et al., 

2011; Tseng et al., 2012). Subsequent studies 

demonstrated that a sub lingual immunization can 

prevent the viral vector entry into the brain (Shim et al., 

2012). Also, an intranasal route of vaccination was 

shown to protect mice from SARS-CoV challenge 

better than an intramuscular delivery of the same 

vaccine (See et al., 2006; Hu et al., 2007). Expression 

of full length S protein is shown to result in enhanced 

hepatitis or infection whereas, expression of just the 

ectodomain of S protein eliminated infection 

enhancement (Weingartl et al., 2004; Yang et al., 

2005b). All these reports point to that it will be 

important to establishan appropriatecombination of 

vaccination route, vaccine vector andchoice of epitopes 

for each vaccine type.SARS vaccines thatgeneratea 

predominantly cellular or a predominantly humoral 

response, as well as therapeutic monoclonal antibodies, 

have been shown protectiveeffects in animal models. 

Therefore, what kind of responses are important for 

protection has not been clear (Subbarao et al., 2004; 

Zakhartchouk et al., 2005; Lin et al., 2007; See et al., 

2008; Zhao and Perlman, 2010). Cameron et al. (2012) 

have recently reported an analysis of transcripts 

expressed during SARS-CoV infection in vaccination 

and reinfectiontrials in ferrets (Cameron et al., 2012). 

Such studies can potentially reveal new therapeutic 

options in addition to providing the basic 

understanding of host responses during infection, 

vaccination and re-infection. 
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Table 2. Experimental vaccines for SARS 

Vaccine type Safety Efficacy 

Inactivated virus Safe and immunogenic in humans  Efficacy needs to be established in 

 (Lin et al., 2007). Hypersensitive  appropriate animal model (See et al., 2008) 

 reaction upon post-immunization viral  

 challenge in mice (Kam et al., 2007;  

 Tseng et al., 2012) 

Recombinant vector Disease exacerbation upon SARS-CoV Protective in mice, ferrets, monkeys,  

Vaccines (Adenovirus, challenge in some cases (Czub et al., 2005) hamsters (Bukreyev et al., 2004; 

Poxvirus or recombinant)  See et al., 2006;  

  Napoli et al., 2007; See et al., 2008) 

Subunit or virus like  Immunopathology is observed in some cases Protective in hamsters and ferrets  

particle vaccines (Kam et al., 2007; Jaume et al., 2011;  (Kam et al., 2007; Tseng et al., 2012) 

 Tseng et al., 2012).  Hypersensitive   

 reaction upon post-immunization viral challenge  

 in mice (Kam et al., 2007; Tseng et al., 2012) 

DNA vaccines Safe and immunogenic in healthy humans  Protective in mice (Yang et al., 2004) 

 (Martin et al., 2008). Hypersensitive reaction  

 upon post-immunization viral challenge in mice  

 (Kam et al., 2007; Tseng et al., 2012) 

Attenuated vaccines Safety needs to be established E protein lacking-or ExoN mutant vaccine 

  is immunogenic and efficacious  

  (Lamirande et al., 2008; Graham et al., 2012) 

 

2. CONCLUSION 

 Although, a myriad of compounds have been 

identified to show inhibitory effects on SARS-CoVin 

vitro, only a few of those are reported for their safety 
and efficacy in animal models. Of the tested 

compounds, a hybrid interferon alpha (IFN-α) and an 
IFN- inducer, a mismatch double stranded RNA, have 

shown potent inhibition of SARS-CoV replication in 
the lungs of infected mice (Barnard et al., 2006). It 

would be useful and desirable to evaluate the other 

compounds in animal models for their safety and 
efficacy. With identification of epitopes that will not 

generate antibodies cross-reactive to self-antigens 
andcare taken to eliminate antibody dependent 

enhancement of disease, therapeutic use of human 

monoclonal antibodies seems a promising option for 
SARS. Coughlin and Prabhakar (2012) have reviewed 

the human monoclonal antibodiesgenerated for anti-
SARS therapy (Coughlin and Prabhakar 2012). For 

active immunization, efficacy of the developed 
vaccines needs to be established in a most relevant 

disease model. Efforts have gone into improving animal 

models for SARS; however, they still have limitation. 
 A novel SARS-like human coronavirus, HCoV-

EMC/2012 was identified earlier this year (Lu and Liu, 

2012; Boheemen et al., 2012). Although, HCoV-

EMC/2012 is only distantly related to SARS-CoV, the 

knowledge and reagents acquired from SARS-CoV 

research may prove useful in understanding and 

controlling this novel and other coronavirus 

(Elshabrawy et al., 2012; Graham et al., 2012). 
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