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ABSTRACT 

We study the Hawking radiation of Dirac particles from Phantom Reissner Nordstrom ADS black hole by 
tunneling method. We use charge relativistic Dirac equation to study the emission of such particles. To 
solve Dirac equation we use WKB approximation and find the tunneling probability of outgoing particles. 
Finally we find the Hawking temperature for such type of black holes. 
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1. INTRODUCITON 

Particles and anti particles are created permanently at 
the event horizon of the black hole due to the high 
gravitational fields and vacuum fluctuations. Stephan 
Hawking theoretically showed that one of the particle 
can go out of the black hole by calculating the 
Bogoliubov transformation between the initial and final 
states of ingoing and outgoing radiation (Hawking, 1974; 
1975; Birrel and Davies, 1982). In this way Wick 
rotation Method (Gibbons and Hawking, 1977a; 1977b), 
Anomaly method (Iso et al., 2006) and methods of 
dimensional reduction (Umetsu, 2010) has been widely 
used by different authors to investigate the Hawking 
radiations from different black holes. Similarly Hawking 
radiation as quantum tunneling effect at event horizons 
of the black holes is discussed by different authors and 
quantum tunneling method (Parikh and Wilczek, 2000; 
Padmanabhan, 2004; Srinivasan and Padmanabhan, 
1999; Shankaranarayanan et al., 2002; Kraus and 
Wilczek, 2009; 1995; Kerner and Mann, 2006; 2007; 
2008; Rehman and Saifullah, 2011; Gillani and 
Saifullah, 2011; Ahmed and Saifullah, 2011; Gohar and 
Saifullah 2012a, 2012b, 2013; Jan and Gohar, 2013) is 
robust method to discuss these radiation. We can apply 
this method to almost all type of black holes in different 
gravity theories from higher dimensions to lower 
dimensions (Ejaz et al., 2013; Vagenas, 2002; Medved 
and Vagenas, 2005; Matsuno and Umetsu, 2011; Kim, 

2011; Hod, 2011; Wu and Peng, 2011). In this study we 
have used the tunneling method to discuss the emission 
of Dirac particles from Phantom Reissner Nordstrom 
ADS black hole and finally get the Hawking temperature 
for this black hole.  

2. PHANTOM REISSNER NORDSTROM 
ADS BLACK HOLE 

Phantom Reissner Nordstrom ADS black hole (RN 
ADS black hole) is a solution of Einstein field equations 
in the presence of cosmological constant. This solution 
arises due to coupling of a field of spin 1 with 
gravitational field. The field of spin 1 may be the usual 
Maxwell one, or with a contribution of negative energy 
density, called phantom. The action for this theory is 
given by (Jardim et al., 2012) Equation (1): 
 

4 v
vS d x g R 2 F F 2µ

µ = − + η + Λ ∫   (1) 

 
where, the first part of the action is the Einstein Hilbert 
action, second is the coupling with phantom field of spin 1 
for η = -1 or coupling with Maxwell field for η = 1 and 
third term is coupling with cosmological constant, Λ. For 
Λ > 0, It behaves as De Sitter (DS) and for Λ < 0, It behaves 
as Anti De Sitter (ADS). R is the Ricci scalar and Fµv = Aµ,v 
--- Av,µ, where Aµ is the four potential. The line element for 
such type of black holes is given by Equation (2 and 3): 
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2 2 1 2 2 2 2 2ds g(r)dt [g(r)] dr r (d sin d )−= − + + θ + θ φ   (2) 
 
Where:  
 

2
2

2

2M Q
g(r) 1 r

r 3 r

Λ= − − + η   (3) 

 
Here, M and Q are the mass and charge of the black 

hole. For η = 1, the black hole is called RN ADS black 
hole and when for η = -1; it is called anti RN ADS 
black hole. The event horizon can be found by putting 
g(r) = 0 so we have two horizon, r+ and r-. For RN 
ADS; we have 0 < r- < r+ and for anti RN ADS; we 
have r- < 0 < r+. For anti RN ADS; we have the event 
horizon given by (Jardim et al., 2012) Equation (4): 
 

1 6 12M
r x x

2 x
+

 
= + − −  Λ Λ 

  (4) 

 
Where Equation (5 to 8): 
  

2
x A B= + +

Λ
 (5) 

 
2

3
2 1 4 Q

A
y

 − Λη= −  Λ 
  (6) 

 

3
y 3

B
32

 = −  Λ 
  (7) 

 

( ) ( )( )
2 2

1
2 3 22 2 2

y 2 36 M 24 Q

2 36 M 24 Q 4 1 4 Q

= − Λ + ηΛ +

− Λ + ηΛ − − ηΛ
  (8) 

 
The mass of the black hole is given by Equation (9):  

 
2

2
2

r Q
M 1 r

2 3 r+
+

+  Λ η= − + 
 

 (9) 

 
3. QUANTUM TUNNELING 

To investigate the Hawking radiation of Dirac 
particles or spin half fermions from the black hole, we 
use the relativistic charged Dirac equation with Dirac 
field ψ = ψ (t, r, θ, φ) given by Equation (10): 
 

( )i iqA m 0µ
µ µ µγ ∂ + Ω − ψ + ψ =ℏ  (10) 

where, m and q are the mass and charge of the particle. 
Aµ is the electromagnetic four potential and other 
parameters are defined as follow Equation (11 and 12): 
 

i

2
αβ

µ µ αβΩ = Γ ∑  (11) 

 
i

,
4

α β
αβ  ∑ = γ γ    (12) 

 
Here, γµ matrices satisfy [γµ,γv] = 2gµv × I, where I is 

the identity matrix. We use the following γµ matrices to 
study the tunneling of Dirac particles from the horizons 
of anti RN ADS black hole Equation (13 and 14): 
 

3
t

3

ri 0 01
, g(r)

0 i 0g(r)

 σ 
γ = γ =   − σ   

  (13) 

 
1 2

1 2

0 01 1
,

r rsin0 0
φ   σ σ

γθ = γ =   θσ σ   
  (14) 

 
Pauli sigma, σi, matrices are given by Equation (15): 

 

1 2 30 1 0 i 1 0
, ,

1 0 i 0 0 1

−     
σ = σ = σ =     −     

 (15) 

 
For a Dirac particle, the wave function ψ has two spin 

states namely spin up and spin down so we can take the 
following ansatz for this wave function ψ Equation (17): 
 

A(t, r, , )

0 i
exp I (t, r, , )

B(t, r, , )

0

↑ ↑

θ φ 
 

  ψ = θ φ  θ φ  
 
 

ℏ
 (16) 

 
0

C(t, r, , ) i
exp I (t, r, , )

0

D(t, r, , )

↓ ↓

 
 θ φ   ψ = θ φ    
 

θ φ 

ℏ
 (17) 

 
Here Ι↑ is the action for classical outgoing trajectory. 

Here we deal with only spin up case and for spin down 
case the calculations are same with signature changes. 
Put Equation (16) in Equation (10) and using lowest 
WKB approximation, we get the following four 
equations in leading order of ħ Equation (18 to 21): 
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t
r

tiA( I qA )
B g(r) I mA 0

g(r)
↑

↑

 ∂ −
− + ∂ + =  
 

  (18) 

 

t t
r

iB( I qA )
A g(r) I mB 0

g(r)
↑

↑

 ∂ −
− ∂ + =  

 
  (19) 

 

B i
I I 0

r sin↑θ φ ↑

 − ∂ + ∂ = θ 
  (20) 

 

A i
I I 0

r sinθ φ↑ ↑

 − ∂ + ∂ = θ 
  (21) 

 
If we look at the symmetries of the space time, ∂t and 

∂φ are Killing fields in the respective direction and we 
are only dealing with radial trajectories, so we choose 
ansatz of the form: 
 
I Et W(r, ) J↑ = − + θ + φ   (22) 

 
E is the energy of the particle and J is the 

corresponding angular momentum of the particle. Putting 
Equation (22) in above equations for θ = θo and 
considering only the radial trajectory so by assuming J = 
0, we get the following two equations: 
 

t
r

iA( E qA )
B g(r) w mA 0

g(r)

 − −− + ∂ + =  
 

  (23) 

 

t
r

iB( E qA )
A g(r) w mB 0

g(r)

 − − + ∂ + =  
 

  (24) 

 
If we put mass of the particle, m = 0, we have two 

solutions for Equation (23) and (24). For Equation (26): 
 

r
t

r

E qA
A iB,wehave W(r) W

g(r)+
+= − ∂ = ∂ =   (25) 

 

r r
t(E qA )

A iB,wehave W(r) W
g(r)

+= ∂ = ∂ − = −   (26) 

 
Plus and minus signs correspond to the outgoing and 

incoming particles. Here in Equation (25), we have 
simple pole at r = r+ so we use reside theory for semi 
circle and we get:  

t

r

E qA
W i

g(r )±
+

+= ± π
∂

 (27) 

 
The overall tunneling probability is given by taking ratio 

of outgoing and in-coming rates to get the correct tunneling 
rate is given by (Srinivasan and Padmanabhan, 1999; 
Shankaranarayanan et al., 2002) Equation (28 and 27): 
 

out

in

P
,where

P
Γ =  

 

outP exp( 2Im(I)) exp( 2 Im(W ))+∝ − = −   (28) 

 

inP exp( 2Im(I)) exp( 2Im(W ))−∝ − = −   (29) 

 
We can write the overall tunneling probability as: 

 
exp( 4Im(W ))+Γ = −   (30) 

 
By putting the value from Equation (27), we get 

the tunneling probability for outgoing particles as 
Equation (31): 
 

t

r

E qA
exp 4

g(r )+

 +Γ = − π ∂ 
  (31) 

 
Or: 
 

2

2 3

qQ
2 (E )

r
exp

M Q
r

r 2 r

+

+
+ +

 
− π + 

 Γ =
 Λ− − η 
 

  (32) 

 
From Equation (32) we can conclude that the 

tunneling probability does not depend upon the mass of 
the particle. Comparing Equation (32), with the 
Boltzmann factor, we get the Hawking temperature for 
this black hole and is given by: 
 

2

2 3bh

1 M Q
T r

2 r 3 r+
+ +

 Λ= − − η π  
  (33) 

 
For Massive particle, m ≠ 0, we get: 

 
2

iE m g(r)A

B iE m g(r)

− +  =  + 
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When we approach near the horizon then we 

have
2

A
1

B
  = − 
 

 and we get the Hawking temperature 

similar to massless case. This is because at event 
horizon massive particle behaves like massless 
particle for more detail (Kerner and Mann, 2008). We 
have also taken care of the temporal contribution to 
the imaginary part of the action so that for no value of 
the energy, charge and angular momentum of the 
particles will the tunneling probabilities be greater 
than 1 (Akhmedov et al., 2008; Akhmedova, 2008) 
and they will not violate unitarity.  

If we look at thermodynamic relations for this black 
hole then mass of the black hole is given by putting g(r+) 
= 0 Equation (34): 

 
2

2
2

r Q
M 1 r

2 3 r
+

+
+

 Λ η= − + 
 

  (34) 

 
The entropy of the Black hole is given by Equation (35): 

 

2A
S r

4 += = π   (35) 

 
For the electric potential V Equation (36): 

 

M Q
s V

Q r+

∂ η= =
∂

  (36) 

 
Now we have: 

 
2

Q 2 3

M 1 M Q
T r

S 2 r 3 r+
+ +

 ∂ Λ= = − − η ∂ π  
  (37) 

 
Which is from the thermodynamic relations and 

Equation (37) is same as the Hawking temperature 
calculated from quantum tunneling method. After putting 
the value of M, We have the Hawking temperature 
Equation (38): 
 

2
2

bh 2

1 Q
T 1 r

4 r r+
+

 
= − Λ − η π +  

  (38) 

 
Which is consistent with previous literature     

(Jardim et al., 2012). 

4. CONCLUSION 

By ignoring the self gravity and back reaction of the 
Dirac particle, we have discussed quantum tunneling of 
Dirac particles from the event horizon of the phantom 
ADS black hole. For this purpose, we have used the 
relativistic Dirac Equation and found the tunneling 
probability of outgoing fermions and we found the 
Hawking temperature for ADS black holes. From 
Equation (32), we can say that the tunneling  
probability depends upon the charge of the particle but 
not on the mass of the particle. We have justified our 
results by writing the usual thermodynamic relations 
and which are same by using the tunneling method. 
Last but not least, one can also find the tunneling with 
back reaction from these black holes, which will have 
very interesting results.  
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