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ABSTRACT 

In unified field theories with more than four dimensions, the form of the equations of physics in spacetime 

depends in general on the choice of coordinates in higher dimensions. The reason is that the group of 

coordinate transformations in (say) five dimensions is broader than in spacetime. This kind of gauge 

dependence is illustrated by two examples: a cosmological model in general relativity and a matter wave in 

quantum theory. Surprisingly, both are equivalent by coordinate transformations to flat featureless five-

dimensional space. This kind of transformity is of fundamental significance for the philosophy of physics. 
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1. INTRODUCTION 

It is common to regard the laws of physics as in some 
sense immutable. The equations which embody the laws 

are widely considered to have forms that enjoy more 

permanence than other manifestations of human activity, 
such as the rules of justice or the edicts of religion. Even 

when certain gifted individuals show the way to more 
accurate laws, as from Newton to Einstein, the adjustment 

is incremental and not wholesale. This agrees with the 
widely-held view that the laws of science are objective 

and lie outside the realm of human interference. It will 

therefore probably come as a revelation to the practising 
physicist, or the informed layman, that this reverence for 

the laws of physics is misplaced. 
It is widely believed that the best route to a theory 

that unifies the interactions of particles (quantum 
mechanics) with gravity (general relativity) is via extra 
dimensions. Currently, two such accounts are in vogue, 
namely membrane theory and space-time-matter theory 
(hereafter referred to as M theory and STM theory). 
These theories have similar mathematical structures and 
both employ a five-dimensional abstract ‘space’ that 
embeds four-dimensional spacetime. Both are in 
agreement with available observational data. They 
achieve this by allowing the extra coordinate to play a 

significant role, contrary to the old 5D Kaluza-Klein 
theory (Klein, 1926). Indeed, the flexibility provided by 
the extra coordinate gives 5D theory the conceptual 
elasticity necessary to stretch from microphysics to 
macrophysics. However, it appears to have slipped the 
attention of many physicists that the presence of an extra 
coordinate also has an unexpected consequence. In 
technical terms, a coordinate transformation which 
includes the fifth coordinate will in general change the 
form of the equations in the embedded four dimensions 
of spacetime. Some gauge transformations of this type 
can have a drastic effect, as will be seen below, 
effectively changing a cosmology into an elementary 
particle. In literary terms, it is as if a change in the 
language were to change the meaning of a sentence. If 
the world really does have extra dimensions, the basic 
equations for the physics of spacetime with which we 
have become familiar cannot be regarded as fixed. 

Alarm and despondency might be the response 

among pedestrian physicists, perhaps followed by a 

rejection of the concept and with it the fifth dimension. 

However, the non-covariant behaviour of the 4D 

equations in 5D theory has been appreciated by a few 

discerning people and regarded with equanimity. 

Einstein understood the situation and in work with 

Bergmann went on to state: “We ascribe physical reality 
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to the fifth dimension” (Einstein and Bergmann, 1938). 

Einstein’s contemporary, Sir Arthur Eddington, 

developed a comprehensive philosophy of physics, in 

which certain subjective elements occur as a necessary 

consequence of how humans see the world (Eddington, 

1928). A modern version of Eddington’s philosophy, in 

which 5D physics figures prominently, is due to 

(Wesson, 2011). His account has much in common, as 

regards the treatment of the equations of physics, with 

the book of (Hawking and Mlodinow, 2010), though the 

latter authors do not base their argument for a grand 

design on extra dimensions. As regards the effects of 5D 

coordinate transformations on 4D physics, the subject 

has been treated explicitly in two recent books (Wesson, 

2006). It has also been examined by De Leon (2008), 

who has shown in considerable detail how a simple 

solution in 5D can lead to several different but acceptable 

physical models in 4D. The purpose of the present account 

is to bring this topic to a wider audience. While the issue is 

at base mathematical, it will become clear that there are 

broader implications of the dependence of the laws of 

physics on higher-dimensional coordinate transformations, 

which in short can be termed transformity. 

In theories which involve relativity (which is 

essentially all of those in modern physics), the concept of 

transformity is related to that of covariance. The latter is 

the invariance of the 4D equations under changes of the 

labels for time and ordinary 3D space. Technically, 

transformity involves the breakdown of 4D covariance 

under coordinate transformations in ND where N ≥ 5. 

However, this should actually be voiced in a positive 

way, since if appropriate transformations can be found, it 

is possible to generate new solutions to a set of field 

equations from a known one. This procedure is not 

restricted to finding 4D solutions from a 5D one. 

Einstein’s field equations, for example, are commonly 

regarded as describing gravitational phenomena in a 

curved 4D spacetime. But those equations are not 

restricted to four dimensions and have been extended to 

higher ones, up to versions of string theory with N = 26. 

In Riemannian geometry, as used for Einstein’s theory of 

general relativity, it is always possible to embed an ND 

theory in an (N+1) D manifold. This is guaranteed by a 

local embedding theorem which was outlined in a book 

by Campbell (2003), subsequently proved in detail in a 

Ph.D. thesis by Magaard and then applied to modern 

theories of the Kaluza-Klein type. Such 5D theories 

describe the gravitational and electromagnetic fields, 

with the equations of Einstein and Maxwell, plus a scalar 

field which is believed to concern the masses of particles 

and is frequently couched as an equation of the Klein-

Gordon type. Depending on the application, the 5D 

formalism gives rise to the a for mentioned STM theory 

(Wesson, 2006) and M theory (Randall, 2002). The 

former uses the fifth dimension to give a geometrical 

origin for matter, while the latter uses it to explain the 

masses of particles. As a theory of fields, 5D relativity is 

classical in nature. But the quantum analog involves 

gravitons with spin 2, photons with spin 1 and scalar 

particles with spin 0. The last may be related to the 

Higgs mechanism by which particles acquire masses, 

currently under study at the Large Hadron Collider. It 

becomes apparent that 5D relativity has considerable 

scope and it accordingly affects many areas of physics 

(Halpern, 2004). It has, in particular, been employed to 

derive 5D models of the universe based on general 

relativity (De Leon, 1988; Seahra and Wesson, 2001; 

Robertson and Noonan, 1968; Rindler, 1997;    

Mashhoon et al., 1994) and 5D wave-mechanical models 

of particles based on quantum theory (Mashhoon and 

Wesson, 2011; Wesson, 2013; De Broglie, 1924; 

Feynman, 1950; Kocsis et al., 2011). Since it is inherent 

to 5D relativity, it also becomes apparent that 

transformity has considerable scope. 

To illustrate the efficacy of transformity, two 

examples will be given in the next section. One concerns 

cosmology and the other concerns quantum theory. The 

working is mathematical, but the results are given a more 

qualitative interpretation in the last section. 

2. TWO EXAMPLES OF 

TRANSFORMITY 

In order to match the nomenclature of 4D general 

relativity, the coordinates of a point in the 5D manifold 

are labelled x
0
 = t for time, x

123
 = rθφ or xyz for ordinary 

3D space and x
4
 = l for the extra length (This is the usage 

in STM theory, while M theory commonly uses x
4
 = y, a 

practise avoided here to forestall confusion). Then the 

interval between two nearby points is given in terms of the 

metric tensor by dS
2
 = gAB dx

A
 dx

B
 (A, B = 0,123, 4with 

summation over repeated indices). This contains the 

conventional 4D interval ds
2
 gαβdx

α
 dx

β
 (α, β = 0,123). But 

because gAB gAB = gAB (x
γ
, l) then generally gαβ gαβ (x

γ
, l) 

and the 4D potentials may depend on the extra coordinate. 

For the purpose of the two examples to follow, it is not 

really necessary to assign the fifth coordinate x
4
 = l any 

special kind of physical meaning. However, those 

readers who wish to have a physical identification may 

like to note that there is a special class of metrics known 

as canonical, where it is assumed that the extra 
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coordinate measures the rest mass m of a test particle 

(Wesson, 2006; Mashhoon et al., 1994). There are 

actually two ways of doing this, suggested by the 

fundamental constants for gravitation and quantum 

physics. Namely l = Gm/c
2
 and l = h/mc, the 

Schwarzschild radius and the Compton wavelength. 

Here G is the gravitational constant, h is Planck’s 

constant of action and c is the speed of light. To 

streamline the algebra, though, these constants can be 

absorbed via a suitable choice of units which renders 

their magnitudes equal to unity.  

The field equations for 5D relativity are frequently 

taken to be the analogs of the 4D ones of general 

relativity as applied to the solar system. In terms of the 

Ricci tensor, they read Equation (1): 

 

AB
R 0 (A,B 0,123,4)= =   (1) 

 

These have 15 independent components and 

numerous solutions of them are known (Wesson, 2006). 

It is now general knowledge that the 5D equations 

contain the 4D Einstein equations, by virtue of 

Campbell’s embedding theorem (Campbell, 2003). 

Einstein’s equations, in terms of the tensor named after 

him and the energy-momentum tensor, read Equation (2): 

 

G g 8 Tαβ αβ αβ+ Λ = π   (2) 

 
The cosmological constant Λ is included explicitly 

here because it will prove important in the second 

example below. It should be noted that the matter terms 

which appear on the right-hand side of (2) can, if so 

desired, be thought of as arising from the extra terms in 

(1) due to the fifth dimension. This is a corollary of 

Campbell’s theorem and is the reason why STM theory 

is sometimes referred to as induced-matter theory. 

Flat space in 5D is simply an extension of Minkowski 

space in 4D, with interval Equation (3): 
 

2 2 2 2dS dT d dL= − Σ ±   (3) 
 

Here dΣ
2
 is shorthand for the separation in 3D, so dΣ

2
 

= dR
2
 + R

2
 (dθ

2
 + sin

2
θ dφ

2
) in spherical polar 

coordinates or dΣ
2
 = (dx

2
 + dy

2
 + dz

2
) in Cartesian 

coordinates. The last term in (3) canhave either sign, 

depending on whether the extra coordinate is spacelike 

or timelike (It does not have the nature of a time, so there 

is no problem with closed timelike paths which lead to 

paradoxes with causality). For the 5D canonical metric 

mentioned above, it is known that the sign choice in the 

metric is connected with the sign of the cosmological 

constant: Λ>0 for a spacelike extra dimension and Λ<0 

for a timelike extra dimension. 

Transformity, as defined before, implies that a given 

situation in 5D can lead to different physical situations in 

4D. This sounds blasphemous when judged from the 

viewpoint of classical general relativity. But that it can 

happen when the theory is widened by extra dimensions 

may be appreciated by considering the groups of coordinate 

transformations involved in 5D and 4D Equation (4): 
 

A
A Bx x (x ), x x (x )

− −α
α β→ →   (4) 

 
These are not equivalent, the former being broader 

than the latter (A = 0-5, α = 0-4). A little thought shows 

that, provided coordinate transformations involve the 

extra coordinate in a meaningful way, a single algebraic 

form in 5D can change to different forms in 4D and 

insofar as we ascribe different physics to different 

algebraic models, a given 5D form can yield different 

kinds of 4D physics. Consequences of transformity occur 

throughout the last 20 years’ work on unconstrained 5D 

relativity (Wesson, 2006; De Leon, 2008; 1988; 

Mashhoon et al., 1994). It is hoped that the present 

account will serve to focus attention on the underlying 

cause, which is the discrepancy in the transformation 

groups (4). Arguably, the best way to illustrate the 

effects of transformity is to show how it is possible to go 

from the flat 5D space (3) to curved 4D spaces, which 

interpreted using general relativity describe situations 

with significant physics. That is, in loose language, to go 

from a featureless situation to ones with real physics. 

Cosmology provides the first example. Consider the 

flat metric (3) with coordinates T, R, θ, φ, L when the 

angles θ, φ are held fixed but the other measures are 

changed to t, r, l. 

Where Equation (5): 

 

( )
1 1

1 1

l
1 1

2 (2 1) / l(1 2 ) / (1 )
/ l / (1 )

2

/ l / (1 )

(2 1) / (1 2 ) / (1 )2
/ l (1 )

2

r t
T(t, r,l) 1 t

2 1 2

R(t, r, l) rt

r t
L(t, r,l) 1 t

2 (1 2 )

α− α − α −α
α −α

α −α

α− α − α −α
α −α

  α
= + −  

α − α   

=

  α
= − +  

α − α   

  (5) 

 

Here α is a dimensionless constant whose 

significance will soon become clear. The extra 

dimension is taken to be spacelike in (3), which by some 

tedious algebra can be shown to become Equation (6): 
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( ) ( )

2 2
2 2 2 2/ l2/(1 ) 2 2 2 2t

dS l dt t dr r d dl
1

α −α α
= − + Ω −

− α
  (6) 

 

This metric is recognized as one of a class found 

originally by Ponce De Leon, who looked for 5D 

solutions to the field Equation (1) that reduce on the 

hypersurfaces l= constants to the standard Friedmann-

Robertson-Walker ones of general relativity (De Leon, 

1988). In fact, the 4D part of (6) describes FRW models 

with flat space sections and scale-factors S(t) ~ t
1/α

 for 

the expansion rate. (The angular part of the metric is 

written in shorthand using dΩ
2
 ≡ dθ

2
 + sin

2
θ dφ

2
) The 

choice α = 3/ 2 gives back the Einstein-deSitter model 

with S(t) ~ t
2/3

, which is the simplest realistic cosmology in 

general relativity. The interpretation of (6) as FRW models 

is confirmed by working out its properties of matter using 

Einstein’s Equation (2) and the 4D part of (6). Assuming 

that the matter is a perfect fluid with density ρ and pressure 

p, these are found to be specified by Equation (7): 

 

2 2 2 2

3 2 3
8 , 8 p

α −
πρ = π =

α τ α τ
  (7) 

 

where, τ ≡ lt is the proper time. The equation of state is p = 

(2α / 3-1)ρ. For α = 3/2, the density and pressure are ρ = 

1/6πτ 2 with p = 0, which is the standard dust model. For α 

= 2, ρ = 3/32πτ
2
 = 3p, which is the standard radiation 

model. In summary, reasonable models for the universe are 

obtained by applying transformity to flat space. 

Quantum mechanics provides the second example. 

The first working model for quantum phenomenon was 

provided by the wave mechanics of De Broglie, which 

was cast into the form of an equation applicable to the 

hydrogen atom by Schrodinger. The general, relativistic 

form of the Schrodinger equation is the Klein-Gordon 

equation. While existing since 1924, wave mechanics 

has undergone a resurgence in modern times, with new 

versions of the double-slit experiment and renewed 

interest in neutron interferometry (Kocsis et al., 2011). 

Since 5D relativity includes a scalar field believed to be 

related to the masses of particles, a challenge for it is to 

make contact with wave mechanics and especially with 

the Klein-Gordon equation (which can be regarded as a 

kind of field equation with particle rest mass as source). 

Assuming that De Broglie waves propagate through the 

vacuum, it is natural to consider the de Sitter solution of 

general relativity. In this, the energy density of the 

vacuum is measured by the cosmological constant Λ 

(Wesson, 2006). The de Sitter solution in Einstein’s 

theory is commonly given in textbooks in two forms, a 

cosmological (expanding) version and a local (static) 

version. These are related by a somewhat involved (4D) 

coordinate transformation, whose precise form need not 

be repeated here. But it was shown long ago by 

Robertson that the cosmological version of de Sitter 

space could be embedded by a coordinate transformation 

in 5D Minkowski space (Robertson and Noonan, 1968) 

and more recently Rindler has given a thorough 

demonstration of the same thing for the static version, 

showing that it maps to a kind of sphere in flat 5D space 

(Rindler, 1997). If the goal is to use transformity to go 

between flat space and a De Broglie wave propagating in 

the (de Sitter) vacuum, the remaining step is to connect 

the vacuum metric to a wave metric. This has been done 

by Wesson (2013). The details are not really necessary, 

since the flatness of the wave metric in question can be 

shown quickly by computer, as can the fact that it 

satisfies the field Equations (1). The metric is of 

canonical form, with interval Equation (8): 

 
2

2

2

2 2 2

2

2 2

l
dS

L

2i
c dt exp (ct x) dx exp

L
dt

2i 2i
(ct y) dy exp (ct z) dz

L L

=

  − ± + α −     
+ 

    ± + β − ± + γ        

  (8) 

 

Hence the constant length L is related to the 

cosmological constant by Λ = −3/L
2
. There is a wave in 

3D, whose frequency is f =1/L and whose wave-numbers 

in the three directions of ordinary space are kx = α/L,  ky 

= β/L and  kz = γ/L. The dimensionless constants α, β, γ 

are arbitrary, so the speed of the wave in the x-direction 

(say) is c/α and can exceed the speed of light c (which is 

here kept explicit). Other properties of the wave show 

that it is of De Broglie type and obeys his relation 2vpvg 

= c
2
 between the phase velocity and the group velocity 

(De Broglie, 1924). In wave mechanics, the phase 

velocity refers to the oscillations in the vacuum, while 

the group velocity is identified with the speed of the 

associated particle. These complementary phenomena 

are, of course, the essence of wave-particle duality. 

Incidentally, the equations of motion which go with 

the metric (8) yield the Klein-Gordon equation 

(Mashhoon and Wesson, 2011). Considering the 

complexity of the physics implied by the wave metric 

(8), it is remarkable that the latter is related to the 

metric (3) of flat space. 
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3. CONCLUSION 

Transformity may be regarded as a kind of hidden 

principle of N-dimensional field theory and there are 

good reasons why it is only now emerging as a subject of 

discussion. It says that, given a ‘big’ space of dimension 

(N+1) that contains a ‘little’ space of dimension N, the 

group of coordinate transformations for the former is 

broader that for the latter, so in general a change of 

coordinates in the big space will change the appearance 

of the equations of physics in the observer’s little space. 

This was illustrated in the foregoing section, where two 

examples were given showing how a flat space in 5D can 

be changed to curved spaces in 4D, as relevant to 

cosmology and wave mechanics. 

These cases fit naturally into the modern versions of 

5D relativity known as space-timematter theory and 

membrane theory. It is important to realize that in both 

of these theories, the 4D part of the 5D metric depends in 

general on the extra coordinate x
4
 = l. This is quite 

different from the old Kaluza theory, where the so-called 

“cylinder condition” ruled out dependency of the metric 

coefficients on l (Klein, 1926). The modern theories also 

eschew the condition introduced by Klein known as 

“compactification”, where the extra dimension is 

assumed to be rolled up to an unobservably small size. 

The richness of the algebra of unconstrained 5D 

relativity leads to situations where a given metric in 

5D can correspond to different metrics in 4D and 

thereby to different physics. The examples given 

above show this, though it should be pointed out that 

transformity is not restricted to 5D. 

In a theory with N dimensions, the field equations 

determine the components of the metric tensor gAB, 

which is symmetric. Regarding gAB as an N×N array, 

there are N
2
 components, but they are not all 

independent. Along the diagonal there are N elements, so 

in each of the symmetric off-diagonal sectors there are 

(N
2
-N)/2 elements. This plus the number along the 

diagonal shows there are (N
2
-N)/2 + N = N(N +1)/2 

independent components of gAB. These are exactly 

determined by the field equations 0 RAB = 0 which has 

the same number of independent components. Both STM 

and M theory have N = 5, so there are 15 physically 

relevant components of the field equations. More 

complicated theories use N>5. Increasing the 

dimensionality N does not necessarily lead to improved 

understanding, because the physical meaning of the 

higher-dimensional coordinates becomes less clear. The 

field equations also become harder to solve as N 

increases. However, in any theory of this type, the 

coordinates are arbitrary as they are in Einstein’s 4D 

theory (covariance). For any N, there are N degrees of 

freedom available to choose the coordinates in a way 

which renders the field equations easier to solve. For N = 

5, four of these degrees of freedom are frequently used to 

remove the electromagnetic potentials (g4α), as was done 

for the metrics (6) and (8). For the latter case, the 

remaining degree of coordinate freedom was used to 

flatten the scalar potential (g44), giving the canonical 

metric. Interestingly, the availability of N degrees of 

coordinate freedom means that an ND metric can always 

be put into the form of an (N-1)D one, plus an extra 

piece which is flat and therefore physically innocuous. 

This is another consequence of Campbell’s theorem, 

which applies to any value of N (Campbell, 2003). 

While special values of N may have certain appeal 

because of the group structure, transformity implies 

that there is no ‘magic’ value of N. 

Flatness is a special property of certain solutions to 

the ND field equations, which some workers find of 

special interest. However, it may not always be apparent. 

For example, the cosmological and wave-type metrics 

given above do not look flat and this property is only 

revealed by fairly complicated coordinate 

transformations. It should also be emphasised that there 

are many solutions of the 5D field equations (1) which 

have physically-reasonable forms but are not flat 

(Wesson, 2006). That is, they have a vanishing Ricci 

tensor but a non-vanishing Riemann tensor (RAB = 0, 

RABC
D
 ≠ 0; the second has a greater number of 

independent components than the first). The best-known 

class of 5D solutions of this type are the 3D spherically-

symmetric objects known as solitons. The 4D part of the 

5D soliton metric is a generalization of the standard 

Schwarzschild metric of general relativity and both have 

singularities at the centre of ordinary 3D space. It was 

demonstrated many years ago by Tangherlini and others 

that the Schwarzschild solution of Einstein’s equations 

can only be embedded in a flat space if N≥6. To embed 

any solution of Einstein’s equations in a flat space the 

latter must have N≥10, a property basic to the approach 

to unification known as supersymmetry. 

In 5D, a preferred way to solve the field equations is 

to presume the existence of a gauge. This is commonly a 

function of the extra coordinate (x
4
), which is multiplied 

onto a 4D metric that depends on the coordinates of 

spacetime (x
γ
). The canonical metric of STM theory and 

the warp metric of M theory both involve gauges. An 

advantage of the gauge approach is that it separates the 

dependency of the physics on x
4
 and x

γ
, making for an 
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easier interpretation. However, not all solutions of the 

field equations can be put into gauge form and even if 

there is a well-defined gauge, it is not clear if the 4-space 

experienced by an observer is the whole of the 4D part of 

the metric or only its post-gauge x
γ
-dependent part (This 

problem of interpretation also exists in 4D scale-

invariant theories, where a scalar function multiplies a 

4D spacetime and the two choices are referred to as 

the Jordan and Einstein frames). It should also be 

pointed out that a change to the gauge function, even a 

small or trivial one, can significantly alter the physics 

experienced     by  an  observer  confined to the 4D x
γ
 -

dependent subspace. This happens, for example, in the 

canonical metric where a shift (l→l0) in the extra 

coordinate causes a divergence to appear in the purely 4D 

cosmological ‘constant’ (Wesson, 2006; Mashhoon and 

Wesson, 2011). This constitutes a special kind of 

transformity and is one of the things that need further 

study. A possible application of gauge-like transformity 

concerns the interpretation of quantum mechanics due to 

Stueckelberg and (Feynman, 1950). They argued that, in 

order to correctly calculate the probability of a particle 

moving between one location and another in 4D 

spacetime, it is necessary to take into consideration all 

conceivable paths, not only the classically-preferred or 

shortest one. This sum-over-paths interpretation of 

quantum mechanics draws support from several 

directions and has been adopted into cosmology by 

Hoyle and Narlikar (1995), Hawking and others 

(Wesson, 2006). But where does it originate? A plausible 

explanation is that the many gauges of 5D manifest 

themselves as the sum-over-paths of a particle in 4D.  

It has been seen that transformity can affect both 
cosmology and particle physics. Solutions of the field 
equations (1) relevant to those subjects are given by 
metrics (6) and (8). These look very different; but they 
are in fact equivalent via coordinate transformations to 
the metric (3) of flat 5D space. This is typical of 
transformity, which arises essentially because the group 
of 5D coordinate transformations is broader than the 
group of 4D transformations, so a change involving the 
fifth coordinate affects the 4D physics. An implication is 
that 5D physics concerns not only the search for 
solutions of the field equations, but also a search for 
appropriate coordinate systems. This may at first appear 
to be a drawback of 5D physics. But on second thought, 
such an opinion is recognized as coming from a 
viewpoint restricted to 4D, where the arbitrariness of 
coordinates is frequently regarded as a nuisance. Instead, 
transformity should be regarded as an integral part of the 

quest for unification. It applies in any unrestricted ND 
theory and is in fact an inevitable consequence of the 
algebra of such theories. From the mathematical side, 
transformity should be regarded as an algebraic technique, 
akin to others in field theory such as covariance. From the 
physical side, it fits with the views of Eddington and others 
(Eddington, 1928; Wesson, 2011) who argue that to a 
certain extent the laws by which the world is described 
depend on how humans perceive it. 
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