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Abstract: Problem statement: Infection with retroviruses such as human immunodeficiency virus 
type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1) have been shown to lead to 
neurodegenerative diseases such as HIV-associated dementia (HAD) or neuroAIDS and HTLV-1-
Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), respectively. Approach: HIV-1-
induced neurologic disease is associated with an influx of HIV-infected monocytic cells across the 
blood-brain barrier. Following neuroinvasion, HIV-1 and viral proteins, in addition to cellular 
mediators released from infected and uninfected cells participate in astrocytic and neuronal 
dysregulation, leading to mild to severe neurocognitive disorders. Results: The molecular architecture 
of viral regulatory components including the Long Terminal Repeat (LTR), genes encoding the viral 
proteins Tat, Vpr and Nef as well as the envelope gene encoding gp120 and gp41 have been implicated 
in ‘indirect’ mechanisms of neuronal injury, mechanisms which are likely responsible for the majority 
of CNS damage induced by HIV-1 infection. The neuropathogenesis of HAM/TSP is linked, in part, 
with both intra-and extracellular effectors functions of the viral transactivator protein Tax and likely 
other viral proteins. Tax is traditionally known to localize in the nucleus of infected cells serving as a 
regulator of both viral and cellular gene expression. Conclusion/Recommendations: However, recent 
evidence has suggested that Tax may also accumulate in the cytoplasm and be released from the 
infected cell through regulated cellular secretion processes. Once in the extracellular environment, Tax 
may cause functional alterations in cells of the peripheral blood, lymphoid organs and the central 
nervous system. These extracellular biological activities of Tax are likely very relevant to the 
neuropathogenesis of HTLV-1 and represent attractive targets for therapeutic intervention.  
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INTRODUCTION 

 
 Human Immunodeficiency Virus type 1 (HIV-1) 
and Human T cell Leukemia Virus type 1 (HTLV-1) 
both belong to the retroviridae family of viruses. These 
two retroviruses by definition infect cells as RNA 
genomes and utilize viral encoded reverse transcriptase 
to synthesize a DNA copy of the genome to integrate 
into the host cell, chromosomal material thereby 
allowing them to utilize the host cell transcriptional 
machinery to synthesize components necessary for 

viral replication. In the case of both of these viruses, 
this integration ultimately results in productive viral 
replication that can under certain circumstances lead 
to an immunodeficiency marked by depletion of CD4+ 
T cells and neurodegenerative diseases such as HIV-
Associated Dementia (HAD) or neuroAIDS and 
HTLV-1-Associated Myelopathy/Tropical Spastic 
Paraparesis (HAM/TSP), respectively. In the case of 
HTLV-1, the integration event may also initiate a 
series of molecular and signaling events that leads to 
oncogenic processes within the CD4+ T cell 
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compartment leading to malignancy within this critical 
immune cell population. Interestingly, these two 
disease processes share some similarity in that the 
resulting neurodegeneration is caused at least in part 
by (1) a dysregulation of inflammatory cytokines and 
chemokines, (2) recruitment of immune cells to the 
CNS albeit monocyte-macrophages in HIV-1 and T 
cells in HTLV-1 and (3) functional properties of viral 
transactivator proteins, Tat in the case of HIV-1 and 
Tax with HTLV-1-induced neurologic disease. In both 
of these retroviral-induced neurologic diseases, the 
shared mechanistic processes lead to devastating and 
progressive neurodegenerative consequences. In 
addition, both diseases have unique qualities. HIV-1 
also involves other viral proteins such as Viral protein 
R (Vpr), Nef and the envelope proteins gp120 and 
gp41, all of which can be secreted and have been 
shown to have neurotoxic properties. HTLV-1 on the 
other hand, has been shown to involve gp46-specific 
antibodies directed against a number of cellular 
determinants. This review will provide an overview of 
the mechanisms of both HIV-1 and HTLV-1 
neurodegeneration providing the current knowledge 
on the similarities and differences of these 
mechanisms. 
 
Overview of HIV-1-associated neurologic disease: 
HIV-1 infection, in addition to resulting in the eventual 
destruction of the host immune system, may induce the 
establishment of a spectrum of neurologic disorders 
including severe dementia. Opportunistic infections 
resulting from Acquired Immunodeficiency Syndrome 
(AIDS) may affect the Central Nervous System (CNS), 
however, HIV-1 itself is also able to induce 
neuropathology[1-3]. Conditions directly induced by 
HIV-1 include peripheral neuropathies, vacuolar 
myelopathies, as well as a devastating cognitive and 
motor disorder known as HIV-Associated Dementia 
(HAD) [4-7]. With the advent of combination Anti-
Retroviral Therapy (cART), a mild, more subtle form of 
CNS dysfunction termed Minor Cognitive Motor 
Disorder (MCMD) has been described[5,7]. MCMD is 
characterized by a memory loss, decreased 
computational ability and much less pronounced higher 
cortical functions[8]. It has been suggested that ~10% of 
adults infected with HIV-1 suffer from HAD and that 
the prevalence of individuals with MCMD may be 
much higher, possibly approaching 30% of the HIV-1-
positive population[7]. The clinical presentation of 
MCMD is associated with neuropathogical alterations 
characteristic of HIV encephalitis (HIVE) and this 
syndrome is associated with a poorer general prognosis 
for HIV-1-infected patients.  

 It is widely accepted that HIV-1 neuroinvasion 
occurs via transmigration of infected cells of the 
monocyte-macrophage lineage from the peripheral 
circulation, across the Blood-Brain Barrier (BBB) and 
into the CNS. Importantly, although macrophages and 
microglia are the only cells in the brain to be 
productively infected by HIV-1, neuronal injury and 
apoptotic death occurs as a result of HIV-1 infection of 
the CNS[9,10]. The activation of the monocytic cells in 
the brain due to infection by HIV-1, viral proteins, or 
inflammatory mediators generated by the host in 
response to viral infection seemingly results in the 
release of neurotoxic viral factors which ultimately lead 
to astrocytic and neuronal dysfunction, thus driving 
neuropathogenesis and the establishment of HAD[11]. 
Additionally, viral proteins are also likely directly 
involved in neuronal damage and death. Neurotoxic 
viral proteins like Tat and gp120 are known to 
excessively stimulate neurons, resulting in 
excitotoxicity and the loss of critical cellular processes 
in a way corresponding to other neurodegenerative 
diseases[1,3,9,12-14].  
  
HIV-1 replication and the long terminal repeat: The 
initiating step of the HIV-1 lifecycle within an infected 
host involves a high-affinity interaction between the 
HIV-1 envelope (env) glycoprotein gp120 and the CD4 
antigen expressed on target cells including TH cells and 
cells of the monocyte-macrophage lineage[15,16]. Viral 
attachment and subsequent entry into the target cell is 
then facilitated by the aid of an interaction between the 
HIV-1 env glycoprotein gp41 and either the chemokine 
receptor CXCR4 or CCR5, which are predominately 
expressed on the surface of T cells and mononuclear 
phagocytes, respectively[15,16]. The determination that 
CXCR4 and CCR5 function as coreceptors for HIV-1 
attachment and entry into target cells led to a 
generalized but not entirely comprehensive 
understanding as to why some HIV-1 strains 
preferentially infect T cells, while others seem to prefer 
macrophages or both cell populations[15,16]. Once HIV-1 
has gained entry into a target cell, its double-stranded 
RNA genome is reverse transcribed by the viral enzyme 
Reverse Transcriptase (RT), an RNA-dependent DNA 
polymerase. This process results in the formation of viral 
cDNA, which is subsequently integrated into the host’s 
chromosomal DNA by the viral enzyme integrase. The 
integrated viral genome is referred to as a provirus, 
which is subsequently transcribed by the host enzyme 
RNA polymerase II (pol II) resulting in a polycistronic 
RNA message that is multiply spliced prior to translation. 
The translated viral proteins combined with two copies 
of the complete HIV-1 RNA genome allow for the 
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formation of new viral particles, or virions able to infect 
adjacent cells within the host[17-27].  
 The process of transcription from proviral DNA is 
driven by the viral promoter region or Long Terminal 
Repeat (LTR), a duplicated ~640 bp DNA region 
located at the 5’ and 3’ ends of the proviral genome 
resulting from the mechanism of reverse 
transcription[28]. HIV-1 transcription is modulated in 
part by interaction of the LTR with various host factors 
including members of the CCAAT/Enhancer Binding 
Protein family (C/EBP), the Specificity protein (Sp) 
family and Nuclear Factor-kappa B (NF-κB) isoforms, 
all of which bind to specific cis-acting elements within 
the HIV-1 LTR facilitating viral gene expression[29-38]. 
The HIV-1 LTR is also known to interact with viral 
factors including the trans-activating protein Tat and 
the accessory protein viral protein R (Vpr), factors 
which enable expression of viral gene products within 
multiple host cell populations under selected biological 
conditions[32,39-41]. 
 HIV-1 Vpr has been shown to interact directly with 
the LTR. Electophorectic Mobility Shift (EMS) 
analyses have demonstrated an association with LTR 
sequences including C/EBP site I, the promoter-distal 
NF-κB site, as well as the upstream ATF-CREB 
binding site[33,39]. This interaction between the LTR and 
Vpr was found to be sequence-specific with respect to 
C/EBP site I[39], with Vpr preferentially binding a 3T 
(C-to-T change at nucleotide position 3) C/EBP site I 
variant, which is known to bind C/EBP factors with low 
affinity[33]. Importantly, affinity of Vpr for C/EBP 
binding site sequence variants within the HIV-1 LTR 
have been correlated to HAD, with the observation that 
C/EBP binding site variants which bind Vpr at high 
affinity being more prevalent in proviruses derived 
from brain tissue of autopsied dementia victims[39].  
 HIV-1 transcription involves an early, Tat-
independent and a late, Tat-dependent phase and 
transactivation of the viral genome is a critical step in 
the viral replication cycle[42]. The presence of Tat has 
been shown to increase LTR-mediated transcriptional 
activity by several hundred-fold and in the absence of 
Tat, viral replication falls to nearly undetectable 
levels[43-45]. Tat is a unique transcription factor in that it 
binds to the “UCU” bulge of the Transactivation 
Response Element (TAR), a cis-acting RNA enhancer 
element contained within the 5’ end of all viral 
transcripts[42,46]. The interaction of HIV-1 Tat with TAR 
RNA increases viral transcription and elongation[47,48]. 
Specifically, HIV-1 Tat is known to promote the 
binding of pTEF-b (cyclin T1 and cdk9) to the TAR 
region located within the viral promoter, which is 
immediately downstream of the transcriptional 

initiation site. The interaction of Tat with pTEF-b and 
the TAR element results in hyperphosphorylation of the 
C-terminal domain and subsequent increased 
processivity of RNA polymerase II (pol II)[47]. 
Additionally, recent evidence has suggested that HIV-1 
Tat may also be involved with the formation of the 
transcriptional preinitiation complex[47]. In addition to 
the HIV-1 LTR, Tat is known to upregulate several 
other viral as well as cellular genes. Within the CNS, 
Tat has been shown to stimulate HIV-1 LTR-mediated 
viral gene expression in the absence of the TAR 
region[49], an activity that may result from its ability to 
enhance the activity of cytokines like TNF-α[50]. TNF-α 
also has the ability to activate the HIV-1 LTR via 
activation of cytoplasmic NF-κB[50-52] and this positive 
feedback mechanism may lead to constitutive TNF-α 
expression within HIV-1-infected cells. 
 The molecular diversity of HIV-1 is a key mediator 
of viral replication and fitness[39,53] and sequence 
variation within Tat appears to influence its effects on 
HIV-1 LTR activity[54]. Studies have demonstrated tat 
sequence heterogeneity among brain-derived HIV-1 
clones from patients with AIDS[55,56] and while 
phylogenetic analyses of tat sequences have not 
revealed clustering among individual clinical groups, 
genetic diversity has been shown to be greatest among 
HAD patients[55]. Therefore, sequence variation within 
Tat likely impacts viral replication and possibly host 
responses to viral infection[57,58]. A recent study 
involving astrocytic and monocytoid cells co-
transfected with tat clones derived from Non-Demented 
(ND) and demented (HAD) AIDS patients and varying 
LTR constructs revealed a decrease in Tat-mediated 
LTR transactivation[59]. Interestingly, both brain-
derived HAD and ND tat constructs induced expression 
of MCP-1 and IL-1β and microarray analysis revealed 
that upregulation of several host genes, including an 
enzyme involved in mediating heparan sulphate 
synthesis, which has been shown to be upregulated in 
the brains of HAD patients[59]. These studies suggest 
that mutations within the tat gene may result in 
neuropathogenic effects leading to the development of 
HAD that are independent of its ability to transactivate 
the HIV-1 LTR[59].  
  
The role of HIV-1 proteins in neurodegenerative 
disease: The mechanism by which HIV-1 infection 
induces neuronal damage and subsequent motor and 
neurocognitive impairment is a controversial subject, 
however it is generally accepted that HIV-1 does 
directly infect neurons to a limited extent[6]; although 
HIV-1 infection of neurons is not considered an 
important component of the etiology of 
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neurodegenerative disease. HIV-1-associated 
neuropathology appears to be, in large part, due to 
neurotoxic viral proteins released into the extracellular 
environment by infected cells[60]. There is evidence 
suggesting a role for multiple HIV-1 proteins in CNS 
deregulation and neuronal injury including Tat, Vpr, 
Nef and the Env proteins 120 and gp41[6]. These 
observations have lead to the formulation of two 
primary theories for how HIV-1 infection results in 
neuropathology, the ‘direct injury’ theory and the 
‘indirect’ or ‘bystander effect’ theory[61]. Clearly, the 
two theories proposed to explain the HIV-1-induced 
neuronal damage are by no means mutually exclusive 
and studies have demonstrated a role for both, however 
the ‘indirect’ mechanism appears to be the predominate 
means of neurodegenerative disease since the number 
of HIV-1-infected cells within the CNS does not always 
correlative with the extent of CNS pathology[3,10,62].  

The HIV-1 envelope proteins 120 and gp41: Several 
studies have provided evidence for both a direct and 
indirect role for gp 120 in neuronal injury and death[63-

65]. HIV-1 gp120 has been shown to induce neuronal 
apoptosis by interacting with chemokine receptors, 
CC-chemokine receptor 5 (CCR5) and CXC-
chemokine receptor 4 (CXCR4), expressed on the 
surface of neurons and glial cells[6,66] (Fig. 1). 
Additionally, several studies have shown gp120-
mediated neuronal apoptosis occurs through interaction 
with the seven-transmembrane chemokine receptor 
CXCR4[67-71]. Binding of gp120 to CCR5 and CXCR4 
activates intracellular signal transduction pathways that 
mediate neuronal apoptosis[66,72,73]. Several studies have 
shown that gp120 disrupts calcium homeostasis in 
neurons and induces disruption of mitochondrial 
membrane integrity leading to release of cytochrome c 
and   activation   of   caspases  and  endonucleases[73-75].

 

 
 
Fig. 1: Mechanism of HIV-1-induced neurodegeneration. Neurodegeneration caused by HIV-1 infection is the result 

of both direct infection of cells, as well as the release of HIV-1 proteins that cause additional 
neurodegeneration. Infected perivascular macrophages and microglia, in addition to producing more infectious 
virus, can also release these viral proteins. These proteins include Tat, Env (120 and gp41) and Vpr; (a) Tat 
(represented as •) exhibits effects on both infected and uninfected cells, because secreted Tat can be taken up by 
neighboring cells. Tat has been demonstrated to play a role in oxidative stress-dependent apoptosis of neurons 
(represented by black cells). It has also been shown that Tat can cause excitotoxicity in neurons by activating 
the NMDAR; (b) Env (represented as ∆) also plays both a direct and indirect role in neurodegeneration. The 
Env protein gp120 has been shown to interact with both CCR5 and CXCR4 expressed on the surface of neurons 
and glial cells and subsequently induce neuronal apoptosis. Macrophages and microglia activated by gp120 
secrete various proinflammatory factors including cytokines, chemokines and arachidonic acid, resulting in 
neuronal damage; (c) Vpr (represented as grey ♦) has been shown to increase viral transcription and production 
in cells of the monocyte/macrophage lineage. Extracellular Vpr has also been demonstrated to induce 
apoptosis in undifferentiated and mature neuronal precursor cells; (d) Nef (represented as grey �) within the 
brain has been shown to be predominantly in astrocytes. Stable expression of Nef may alter the growth 
properties of astrocytes. Nef also demonstrates direct neurotoxicity. When cells of the monocyte-macrophage 
lineage are exposed to Nef, proinflammatory mediators are released 
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Caspase-3 activation by gp120 has been demonstrated 
in rat cerebellar granule cells[76], human embryonic 
kidney cells[77] and human endothelial cells[78]. 
Conversely, studies have shown that caspase-3 
inhibition protects neurons from apoptosis, suggesting 
that therapeutic candidates aimed at inhibiting caspase-
3 activation may prove valuable in preventing gp120-
induced neurotoxicity[79]. 
 Calcium homeostasis is disrupted in neurons by 
gp120-induced perturbation of calcium-regulating 
systems in the plasma membrane and Endoplasmic 
Reticulum (ER)[80,81]. In addition, gp120 activation of 
tissue macrophages and microglia initiates glutamate-
related hyperactivation of the N-Methyl-D-Aspartic 
Acid Receptor (NMDAR), which has been shown to be 
involved in ER stress and Ca2+ release[82,83]. ER stress 
may be involved early in the process of cellular 
apoptosis[84] and it is associated with multiple 
neurodegenerative diseases[85].  
 Macrophages and microglia activated by gp120 
secrete various factors including TNF-α, arachidonic 
acids and various β-chemokines, resulting in neuronal 
damage[6] (Fig. 1). Exposure of astrocytes to gp120 
inhibits their ability to take up glutamate, leading to 
increased glutamate concentrations within the neuronal 
microenvironment, which results in excitotoxicity[86] 
(Fig. 1). Additionally, gp120 has been demonstrated to 
alter gene expression patterns in astrocytes[87,88] and 
neurons[65], providing evidence that alterations in 
cellular processes may contribute to neuronal damage.  
 The HIV-1 transmembrane protein gp41, a protein 
which links gp120 to the viral envelope has been 
observed at elevated levels in patients with HAD. 
Studies have demonstrated gp41 to be lethal to neurons 
at very low concentrations in the presence of glia and it 
has been shown that astrocytes exposed to the carboxy-
terminus of gp41 exhibit defects in glutamate transport 
and release[89] (Fig. 1). The mechanisms of 
neurotoxicity induced by gp41 involves activation of 
iNOS, NO formation, glutathione depletion and 
interruption of mitochondrial function[90-92]. 
  
The HIV-1 accessory protein Vpr: Viral protein R 
(Vpr) is one of six auxillary proteins encoded for by 
HIV-1 and several studies have suggested that this 
protein may have a role in HIV-1-associated 
neuropathogenesis[13,93-95]. HIV-1 Vpr is a critical 
accessory protein of 96 amino acids (14 kDa) 
synthesized from a singly spliced viral mRNA, which 
may oligomerize[95,96]. HIV-1 infection of non-dividing 
cells such as monoctyes and macrophages is critically 
dependent on Vpr[97,98] and the addition of extracellular 
Vpr to latently infected T lymphocytes has been shown 

to dramatically increase viral replication[99]. Vpr has 
been shown to increase viral transcription and 
production in cells of the monocyte-macrophage 
lineage and it may be involved in the translocation of 
the viral Preintegration Complex (PIC) from the 
cytoplasm to the nucleus[96,98,100,101]. It has been 
demonstrated that HIV-1 Vpr arrests T lymphocytes in 
the G2 phase of the cell cycle[97,102-108] and induces 
adherent cell differentiation[109]. Interestingly, Vpr has 
also been shown to suppress the immune response in 
humans by inhibiting clonal expansion of T cells[110], 
providing an ideal physiological environment for 
efficient viral replication[103,111].  
 Vpr, by binding to the p6 portion of the Gag poly-
protein, is incorporated into HIV-1 virons in significant 
quantities[112] and both purified Vpr, isolated from HIV-
1-infected patients and recombinant Vpr has been 
shown to activate viral replication from latently 
infected cells. HIV-1 Vpr is primarily localized in the 
nucleus of the infected cells[113], likely due to the 
strength of its two nuclear localization signals[114]. This 
nucleophilic property of Vpr in combination with its 
presence in the PIC has led to the suggestion that Vpr 
may facilitate increased viral replication in non-
dividing cells like cells of the monocyte-macrophage 
lineage[98,100,101,115]. Some in vitro studies have provided 
evidence in support of a direct role for Vpr in PIC 
import[116,117]. However other studies have placed this 
observation in question[118] and have suggested that Vpr 
is not required for HIV-1 infection of non-dividing T 
lymphocytes[119].  
 The mechanism by which Vpr is incorporated into 
budding virions, which are assembled in the cytoplasm 
near the plasma membrane, is not well understood; 
however, studies have shown that the nuclear export 
property of Vpr is required for its efficient 
incorporation into virions, which is critically important 
for productive viral replication in tissue 
macrophages[120]. The absence of Vpr does not prevent 
HIV-1 infection of tissue macrophages, however, its 
presence has been demonstrated to greatly enhance 
infection of these cells[120]. Studies have suggested that 
Vpr may function like an importin-β homologue by 
directly binding to nucleoporins within the Nuclear Pore 
Complex (NPC)[116,121,122]. Matrix (MA) and Integrase 
(IN) proteins are known to utilize the importin-α/β-
dependent pathway for nuclear import, however, Vpr 
contains a noncanonical NLS and therefore does not use 
these classical pathways exclusively for nuclear 
import[101,114,123,124]. It may be that HIV-1 has evolved a 
novel strategy for avoiding cellular defense mechanisms 
aimed at preventing viruses from entering the nucleus of 
infected cells. Considering the large and significant role 
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that HIV-1-infected macrophages play both in 
peripheral blood and CNS disease as well as HIV 
disease in other organ systems, it is reasonable to 
suggest that interrupting Vpr function in vivo may lead 
to a marked decrease in viral burden within HIV-1-
infected patients and ameliorate some of the deleterious 
effects of HIV-1 infection.  
 Mutational studies have revealed that the region of 
the Vpr responsible for cell-cycle arrest is located in the 
carboxy-terminal basic domain, while the virion 
incorporation and nuclear translocation functions of 
Vpr are elicited by the α-helical amino-terminus, 
suggesting that Vpr likely effects cellular functions in 
multiple ways[125-129]. Additionally, investigations have 
shown that Vpr appears to induce apoptosis in T 
lymphocytes[130,131] and studies have revealed that 
extracellular Vpr induces apoptosis in undifferentiated 
as well as mature, differentiated NT2 CNS neuronal 
precursor cells (derived from a human teratocarcinoma 
cell line)[95]. Importantly, Vpr has also been shown to 
both activate and differentiate monocytic cells in the 
bone marrow[132], a cellular compartment believed to be 
critically important in the neuropathogenesis of the 
HIV-1. Due to the multiple effects of HIV-1 Vpr on 
both T cells and cells of the monocyte-macrophage 
lineage, in addition to the potential apoptotic effect of 
extracellular Vpr on neurons, it has been suggested the 
Vpr very likely plays an important role in CNS damage 
during the course of HIV-1 infection[13] (Fig. 1).  
  
The HIV-1 auxillary protein Nef: HIV-1 Nef is a non-
structural protein and one of its best known properties 
is its ability to impact the trafficking of proteins 
expressed on the surface of cells. Nef has been shown 
to down-regulate CD4 expression in addition to down-
regulating expression of a subset of MHC class 
molecules[133-135], mature MHC class II molecules, CD8, 
CD28, CCR5, CXCR4 and the transferring receptor[136-

142]. The downregulation of CD4 in HIV-1-infected cells 
has been shown to facilitate Env incorporation into 
infectious virions by inhibiting CD4/gp120 complex 
formation on the surface of the cells[143-145].  
 Much like Vpr, Nef is also incorporated into HIV-1 
virions[146-149]. Nef has been suggested to play a major 
role in HIV-1 disease progression toward AIDS[150-156] 
and this increase in viral infectivity associated with Nef 
may explain the increased pathogenicity of wild-type 
(wt) HIV-1 compared to ∆Nef HIV-1 variants[134,157,158]. 
Studies have suggested that Nef may play a role in the 
fusion of HIV-1 to target cells[159] and that Nef may be 
involved in certain post-fusion events such as 
facilitating the trafficking of viral core particles through 
the cortical actin network[160]. 

 Nef affects cellular function in various ways and 
Nef has been detected in the supernatants of HIV-1-
infected cell cultures as well as in sera of AIDS 
patients[161]. Within the brain of HIV-1-infected 
patients, Nef is found predominately in astrocytes[162]. 
Direct neurotoxicity of Nef has been shown by 
exposure of neuronal cell cultures to recombinant Nef 
(rNef)[163] (Fig. 1) and studies have revealed that Nef 
increases total K+ current of chick dorsal root ganglions 
similar to scorpion neurotoxin[164,165], suggesting that 
Nef is able to alter the electrophysiological properties 
of neurons. Exposure of human monocytic cells to 
extracellular Nef results in the release of inflammatory 
mediators (Fig. 1) and exposure of neuronal and 
astrocytic cell lines to rNef leads to the upregulation of 
complement factor C3[166]. In addition, studies have 
indicated that stable expression of Nef may alter growth 
properties of human astrocytes[162].  
 
HIV-1 transactivator protein Tat: HIV-1 Tat is a viral 
nonstructural protein of 86-101 amino acids in length and 
it is the product of two exons[3]. Tat, a transactivating 
nuclear regulatory protein, is critical for viral replication 
and is secreted by HIV-1-infected cells. Secreted Tat 
may be taken up by neighboring cells and by this 
mechanism, Tat is able to elicit affects on both infected 
and uninfected cells[167,168]. Tat has been found in the 
brains of HIV-1-infected individuals with known CNS 
pathology[169] and Tat is known to trigger oxidative 
stress-dependent apoptosis of neurons both in vitro and 
in vivo.  
 Previous investigations have shown that HIV-1 
subtype B-derived Tat can cause excitotoxcity in 
neurons by activating NMDAR[170], however there is 
some controversy as to whether Tat is able to bind 
NMDAR directly. Studies have suggested that Tat 
neurotoxicity is dependent on binding to low-density 
receptor (LPR) with subsequent activation of 
NMDAR[171]. A more recent study aimed at comparing 
the neurotoxic potential of subtype B and C Tat protein 
has suggested that Tat may be able to directly bind to 
NMDAR[172]. More specifically, this study 
demonstrated that both subtype B and C Tat bind 
directly to NMDAR, however, subtype C Tat was 
significantly less neurotoxic. Further analysis of 
sequence differences between the two Tat subtypes 
revealed that the attenuated neurotoxicity was due to a 
Cys31Ser mutation found in subtype C Tat. 
Furthermore, engineering this mutation into a subtype B 
Tat resulted in decreased neurotoxicity similar to that 
observed with subtype C Tat. Interestingly, the 
Cys31Ser mutation had no observable effect on the 
ability of Tat to bind NMDAR[172], suggesting that other 
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regions of the Tat protein are likely responsible for 
binding, while the Cys residue is involved in NMDAR 
activation[172]. These studies underscore potential 
importance of differences in HIV-1 subtypes from 
varying geographical regions and are consistent with 
the observation that geographical regions infected with 
subtype B report more severe forms of HIV-1-
associated neurocognitive impairment as opposed to 
areas of the world infected with subtype C. 
 Several studies have shown that NMDAR function 
may be modulated by dopamine D1-like receptors, 
composed of D1- and D5-like receptors[173-178] and a 
recent study has implicated D1-mediated pathways in 
the mechanism of Tat-induced neurotoxicity[3]. HIV-1 
Tat may influence the activity of D1 receptors in post-
synaptic neurons, thereby resulting in NMDAR-
regulated apoptotic cascades via D1/NMDAR 
interaction, or alternatively, NMDAR activation in D1-
expressing neurons exposed to Tat may up regulate pro-
apoptotic D1-mediated signaling[3].  
 Tat has been detected in the brains of patients with 
HIV-1 encephalitis (HIVE) by both mRNA and 
immunoblot analysis, however the source of the Tat 
detected in these circumstances is unclear[179]. The Tat 
observed in the brains of these patients may be secreted 
by infected cells within the CNS, or it may be 
specifically transported across the BBB from the 
periphery[180]. Either way, once in the brain, Tat may be 
taken-up by resident cells of the CNS, often resulting in 
toxic consequences including neuronal apoptosis[181-183] 
(Fig. 1). Importantly, studies have shown that Tat can 
be transported along anatomical pathways within the 
CNS, indicating that sites of neuronal injury and the site 
of actual viral infection may be distinct from one 
another[184].  
 The uptake of Tat by uninfected cells results in 
deleterious events in both the cytoplasm and nucleus, 
including altered gene transcription, cytokine secretion, 
NMDAR activation in neurons and the initiation of 
apoptotic cascades[3,46,167,168]. A combination of these 
cellular events are likely involved in neuronal apoptosis 
in response to HIV-1 infection and the secretion of Tat, 
however the exact mechanism is not well understood. It 
is generally accepted that glutamate and glutamate 
receptors are involved in the process of neuronal cell 
death, which suggests that HIV-1-associated neurologic 
disease pathogenesis may involve mechanisms similar 
to those of other neurodegenerative disease processes 
with respect to glutamate dysregulation and 
excitotoxicity[3].  
 HIV-1 Tat is known to interact with various 
receptors expressed on different cell types including 
integrins, VEGF receptor (KDR/flk) and possibly 

CXCR4[185,186]. With respect to neurons, Tat uptake and 
internalization occurs primarily via the Lipoprotein 
Related Protein (LRP) receptor, which is expressed on 
the cell surface[187]. There are at least 16 ligands for 
LRP and in the brain it is expressed on both neurons 
and activated astrocytes[185]. Tat is the only known 
ligand of LRP that induces significant levels of 
apoptosis, the reasons for which are not known. 
Following ligand binding to LRP, the receptor-ligand 
complex is internalized. However, in the case of Tat, 
when it binds to LRP it escapes from endosomes to the 
cytoplasm and it can be found localized in both the 
cytoplasm and nucleus where it may affect cellular 
signaling pathways[188]. 
 Exposure of astrocytes to Tat, either extracellularly 
through viral infection or intracellularly via transient 
transfection, results in the induction of cellular 
inflammatory mediators (Fig. 1). Treatment of human 
fetal astrocytes with extracellular Tat has been shown in 
induce production of CCL2 (monoctye chemoattractant 
protein-1, MCP-1)[189]. CCL2 is involved in the 
recruitment of monocytes to sites of inflammation in 
the CNS and it induces monocytic cells to cross the 
BBB and traffic to the site of secretion. Furthermore, it 
has been demonstrated that individuals with HIVE have 
elevated levels of CCL2 in their CSF and even higher 
levels have been associated with HAD[189,190]. 
Interestingly, human astrocytes take up Tat and become 
activated to produce chemokines as well as Nitric 
Oxide (NO), however, these cells do not undergo 
apoptosis unless they are co-cultured with 
neurons[168,181,191]. It has been suggested that Tat-
induced apoptosis of astrocytes requires a yet to be 
identified signal from NMDAR-positive neurons[171].  
 Monocytes recruited to the CNS by CCL2 secrete 
cytokines and neurotoxic mediators[6]. A primary 
function of astrocytes is to regulate extracellular 
glutamate levels in the brain and it has been 
demonstrated that monocyte-secreted TNF-α impedes 
glutamate metabolism by human astrocytes, resulting in 
altered glutamate homeostasis, accumulation of 
extracellular glutamate and potentially neuronal 
injury[192]. In addition to the effect of Tat on glutamate 
metabolism in astrocytes and the resulting neuronal 
glutamate excitotoxicity, other mechanisms are known 
by which astrocytes contribute to neuronal toxicity and 
apoptosis. Tat-treated astrocytes express inducible 
Nitric Oxide Synthase (iNOS) via activation of the NF-
κB and C/EBPβ pathways and the ERK/MAPK 
pathway contributes to NO production in astrocytes by 
activation of C/EBPβ[191]. The NO produced by this 
mechanism may initiate apoptotic events in neighboring 
neurons. 
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 Microglia are resident macrophages in the CNS 
and the most predominate cell type to be productively 
infected by HIV-1 in the brain[171]. Despite the 
relatively high level of HIV-1 infection of resident 
microglia, neurocognitive impairment does not 
correlate with viral load in the brain, but rather with 
neuroinflammation[193]. Activated microglial cells 
secrete pro-inflammatory factors including cytokines 
and chemokines, reactive oxygen species, reactive 
nitrogen species and excitatory amino acids, which 
leads to the recruitment of additional inflammatory 
cells to the brain. Due to the fact that some of the 
inflammatory mediators secreted by microglia are 
known to be neurotoxic, like quinolinic and arachidonic 
acids[194], it has been suggested that activation of 
microglia may contribute both directly and indirectly to 
neuronal damage and apoptosis within the context of 
the HIV-1 infection of the CNS[171] (Fig. 1).  
 
Overview of HTLV-1 neuropathogenesis: The 
debilitating neuroinflammatory disease, HAM/TSP, is 
characterized by over-stimulation of the immunologic 
compartment, including increased expression of a 
repertoire of inflammatory cytokines and chemokines, 
HTLV-1 transactivator protein Tax- and gp46-specific 
antibodies directed against a number of cellular 
determinants (including the heteronuclear ribonuclear 
protein A1, hnRNP A1)[195] and an increase in the 
number of highly activated circulating CD8+ T cells 
directed against the Tax11-19 epitope in both Peripheral 
Blood (PB) and Cerebrospinal Fluid (CSF)[196]. In the 
acute stage of HAM/TSP, both CD4+ and CD8+ T cells 
have been shown to accumulate in lesions of the spinal 
cord; however, during chronic disease, CD8+ T cells are 
the predominant cellular infiltrate in regions of 
demyelination[197-199]. In some HLA-A*201 HAM/TSP 
patients, the frequency of Tax11-19-specific CTLs is as 
high as 20% of all CD8+ T cells in the PB and even 
higher in the CSF[195,196,200-203]. During the course of 
HAM/TSP, various cells of the immune system are 
infected by HTLV-1 in the PB and tissues. These cells 
are also likely infected as BM progenitor cells as a 
result of viral spread from HTLV-1-infected 
CD4+/CD25+ T cells as these cells traffic back into the 
BM from the blood. Trafficking of HTLV-1-infected T 
cells back into the BM over long periods of time has led 
to the development of a large population of HTLV-1 
proviral DNA+/RNA- latently infected cells in the BM 
of HAM/TSP patients[204]. Additional studies involving 
HTLV-1-infected CD34+ human BM progenitor cells 
transplanted into immunocompromised mice led to the 
development of equivalent numbers of proviral DNA+ 
cells within defined immune cell lineages, suggesting 
that maintenance of the proviral genome does not have 

any detectable impact on lineage development[205]. In 
addition to the route of exposure (mucosal versus 
blood-borne) and the inherent differences in the 
associated primary immune response, the following 
factors likely play important roles in the genesis and 
progression of cancer and/or neurologic disease caused 
by HTLV-1: (i) Viral genomic architecture, (ii) Genetic 
background of the human host, (iii) HTLV-1 proviral 
DNA load, (iv) Relative levels of HTLV-1-specific 
RNA-positive CD4+/CD25+ T cells, (v) Concentrations 
of secreted extracellular viral proteins such as Tax, (vi) 
The impact of extracellular viral proteins on cells of 
immune and nervous system origin, (vii) Relative levels 
of HTLV-1-specific antibodies that exhibit cross-
reactivity to cellular proteins, (viii) Relative levels of 
HTLV-1-specific CD8+ T lymphocytes and (ix) 
Relative levels of HTLV-1-susceptible primary and 
secondary target cells in the immune and nervous 
system[200,201,206-210]. Figure 2 depicts these scenarios in 
the context of molecular pathogenesis of HAM/TSP. 
 
Nuclear localization and Tax-mediated regulation of 
cellular genes and viral promoter: The HTLV-1 
oncoprotein Tax has been studied extensively with 
respect to its role in regulating cellular and viral gene 
expression during the course of HTLV-1 infection of 
human CD4+ T ells (primary target ell opulation)[211-213]. 
In particular, these studies have focused on the molecular 
mechanisms pertaining to the interaction of Tax with 
nuclear proteins during transcriptional transactivation of 
cellular and viral gene expression prior to and/or 
subsequent to Tax localization to the nucleus. One of the 
major roles of Tax in productive viral replication 
involves the interaction with host transcriptional 
machinery to facilitate the binding of cellular 
transcription factors to the HTLV-1 LTR. Viral gene 
expression occurs by the binding of Tax to the three 
21-bp Tax responsive elements collectively referred to 
a Tax Responsive Element 1 (TRE-1) that are located 
within the U3 region of the LTR[214-216]. Each of the 
three 21-bp repeat elements is comprised of three 
domains A, B and C. Among these, the central domain 
B has been shown to closely mimic a cyclic AMP 
(cAMP) responsive element (CRE) with a conserved 
8-nucleotide (nt) core sequence (TGACGTCA) that is 
flanked by 5’ and 3’ G/C rich sequences[217]. The 
recruitment of the cellular transcription factors-CRE 
Binding protein (CREB) and serum response factor 
(SRF or p67SRF)-to the CRE by Tax, facilitates 
transcription[218,219]. The interaction of Tax with dimeric 
CREB as a homodimer, results in the formation of a 
ternary complex that in turn helps to stabilize the 
CREB/21-bp repeat complex formation[217,220]. 
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Fig. 2: Overview of the HTLV-1 LTR regulation as it relates to HAM/TSP pathogenesis. The progressive stages of 
HAM/TSP are characterized by the presence of activated CD4+ and CD8+ T cells and macrophages in 
demyelinating lesions. At these sites an array of proinflammatory cytokines are produced facilitating further 
recruitment of inflammatory cells into the CNS. CD4+ T cells represent the chief source of viral gene 
expression and along with the help of antigen presenting cells such as dendritic cells activate CD8+ T cells. 
HTLV-1-specific CD8+ T cells traffic to and accumulate within the CNS throughout the course of 
neurologic disease. Therefore, the presence of activated HTLV-1-specific CD8+ CTL and macrophage 
populations in the CNS may result in the maintenance of a persistent CTL response against infected cells 
expressing viral antigens and proinflammatory cytokine-mediated bystander damage. During this process, 
differentiation of infected bone marrow progenitor cells lead to HTLV-1 genomic activation and an 
increased viral gene expression mediated by Tax-CREB dimer formation and the cell type-specific activity 
of different transcription factors such as AP-1, C/EBP and Sp1/Sp3. BM, bone marrow; CNS; central 
nervous system; PB, peripheral blood; PD, proviral DNA; PR, proviral replication; DC, dendritic cell 

 
As a consequence of the formation of this stabilized 
complex, the two cellular coactivators-p300/CREB-
Binding Protein (p300/CBP) and p300/CBP-associated 
factor (P/CAF) are then recruited independently by Tax 
by binding to the two distinct regions in the amino and 
carboxy terminus of Tax, respectively. Transcription is 
then finally initiated by histone acetylation mediated 
through remodeling of the chromatin structure[221-223]. In 
addition, Tax is also known to activate various cellular 
signaling pathways such as the NF-κB and ATF/CREB 
pathways. The NF-κB is a cytoplasmic transcription 
factor which when activated by Tax leads to the 
phosphorylation and degradation of the bound 
inhibitory proteins (IκBs) thereby allowing the release 
and eventual translocation of the NF-κB to the 
nuclei[224,225]. The ATF/CREB family plays an 
important role in viral transcription as well as Tax-

mediated transcription of cellular genes. CREB is 
activated by phosphorylation in response to the 
intracellular secondary-messenger cAMP via the cAMP 
dependent Protein Kinase A (PKA) signaling 
pathway[226-228]. Numerous studies have focused on the 
interaction between Tax and CREB-1 with TRE-1 and 
the importance of this interaction in the activation of 
viral gene transcription mediated by the TRE-1 21-bp 
repeats[216,229]. These studies have demonstrated that 
direct and indirect interaction of Tax with a spectrum of 
cellular transcription factors may be involved in the 
differential regulation of both cellular gene expression 
and viral LTR activation in T cells and other secondary 
target cell populations. 

 
Mechanism of HTLV-1 LTR activation in secondary 
target populations: Clearly, the interaction of HTLV-1 
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with the CD4+/CD25+ T lymphocyte compartment 
represents a key encounter that leads to either cell death 
resulting from programmed viral gene expression and 
production of progeny virus, or oncogenic 
transformation based on monoclonal expansion of 
infected cells. In addition to the CD4+/CD25+ T cells, 
other immune cell populations, such as CD34+ BM 
progenitor cells[230,231], cells of the monocyte-
macrophage lineage[232], antigen presenting cells such 
as Dendritic Cells (DCs), or cells in the nervous system 
such as astrocytes and microglial cells[232-236] are also 
susceptible to productive HTLV-1 infection[237]. Viral-
induced alterations in these cell compartments likely 
play important roles in the genesis of HAM/TSP. 
However, despite the demonstrated susceptibility of 
these cells very little information exists concerning the 
molecular mechanisms regulating HTLV-1 LTR 
activation in these pathogenically relevant secondary 
target cell populations as compared to CD4+/CD25+ T 
cells. Therefore, we have initiated efforts to define the 
mechanism of HTLV-1 LTR activation during 
monocytic differentiation in parallel with our studies on 
HIV-1 LTR regulation in a similar system[33,38,238]. 
Several members of the CCAAT/Enhancer-Binding 
Protein (C/EBP) family, including C/EBPβ, are 
expressed at high levels in cells of the monocyte-
macrophage lineage[239] and are intimately involved in 
the regulation of myelocytic-monocytic gene 
expression. Results of these studies have shown that 
low-level basal activation of the HTLV-1 LTR was 
significantly enhanced by overexpression of C/EBPβ, 
C/EBPδ, or C/EBPε, whereas transactivation of the 
HTLV-1 LTR by Tax was inhibited by overexpression 
of C/EBPα and C/EBPβ and to a lesser extent by 
C/EBPδ[240]. In addition, the Activator Protein 1 (AP-1) 
family of transcription factors was also shown to 
modulate HTLV-1 LTR activation during phorbol ester-
induced differentiation of monocytes[241]. The binding 
sites for the Stimulating protein (Sp) family of 
transcription factors (Sp1 and Sp3) have been identified 
within the U3 region of the HTLV-1 LTR[242]. Recent 
results have suggested that both Sp1 and Sp3 binding to 
HTLV-1 TRE-1 promoter proximal repeat III within the 
viral LTR participate in regulation of the LTR by Tax. 
However, a majority of studies related to HTLV-1 LTR 
activation[221,243-245] have been performed with transiently 
transfected LTR plasmids as opposed to chromosomally 
integrated LTRs that represent an obligatory step in the 
HTLV-1 life cycle. A report by Okada and Jeang 
indicated differential requirements for activation of 
integrated and transiently transfected HTLV-1 LTRs in 
HeLa and CHOK1 cells by CREB, p300 and P/CAF 
transcription factors[246]. Our recent studies also revealed 

critical differences in the regulation of transiently 
transfected and chromosomally integrated HTLV-1 LTR 
in T cells (Rahman, Wigdahl and Jain, unpublished 
observations). Therefore, understanding how the HTLV-
1 LTR is regulated when formatted in the context of 
chromatin is important for elucidating the biology of the 
provirus within cell populations representative of those 
encountered during the course of disease.  

 
Tax nuclear export, cytoplasmic trafficking and 
cellular secretion: Tax is localized in both the nucleus 
and cytoplasm within cells (reviewed in[247]). The 
nuclear accumulation of Tax is promoted by an NLS 
found within the first 58 amino acids of the amino-
terminus of the protein, a signal that is unique when 
compared to classical NLSs[248,249] in that the signal is 
suspected to involve some form of conformational 
element. In addition to being an intracellular/nuclear 
protein, Tax has been shown to be present in the serum 
and CSF of HAM/TSP patients[250]. However, it is 
unclear whether the cell-free Tax was the result of 
apoptosis or necrosis of HTLV-1-infected cells or if it 
was secreted from the infected cell populations. 
Consistent with the concept of cellular secretion, we 
have reported the presence of a leucine rich NES 
between amino acids 188-200 of Tax. We have also 
reported that the Tax NES may function as a masked 
NES and may be hidden by a protein-protein 
interaction, allowing the Tax NLS to remain the 
predominant localization signal and directing protein 
localization to the nucleus. Furthermore, Tax tertiary 
structure may be altered during the successive steps in 
which the NES is subsequently exposed to cellular 
export machinery. Alternatively, Tax nuclear export 
may be regulated through a secondary protein 
modification such as phosphorylation or acetylation. In 
this regard, Tax phosphorylation has been studied in 
various cell types and alterations in the pattern of Tax 
accumulation within the cytoplasm have been 
reported[251,252]. The release of Tax in the extracellular 
environment has also been reported from HTLV-1-
infected cells[253]. We have also demonstrated the 
secretion of full-length Tax in the cell culture media of 
Tax-transfected cells where Tax secretion was, at least 
in part, dependent on a formal cellular secretory 
pathway[254]. Proteins destined for the cell surface or 
those released into the extracellular environment 
proceed through the cellular secretory pathway after 
being synthesized and inserted into the Endoplasmic 
Reticulum (ER)[255]. We have previously demonstrated 
that Tax co-localizes with cytoplasmic organelles 
relevant to secretion such as ER and golgi complex and 
the movement of Tax within the cytoplasm was found 
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to be characteristic of secretory vesicles[254]. Evidence 
was also presented demonstrating that microtubules and 
the conventional motor protein kinesin are likely 
involved in shuttling Tax-containing secretory vesicles 
from the Golgi to the plasma membrane[254]. 
Subsequent to proper folding in the ER, secretory 
proteins are then sorted from resident ER proteins and 
concentrated into ER exit sites that form coat protein 
complex II (COPII)-coated vesicles. COPII vesicles 
mediate transport of proteins from the ER to the cis-
Golgi[256]. Concentration of proteins into COPII vesicles 
within the ER occurs through a cargo selection motif 
found on most secreted proteins. This motif has been 
shown to consist of a di-acidic signal comprised of an 
aspartic or glutamic acid bordering a variable residue 
(D/ExE/D) also known as a DXE signal[257-259]. Table 1 
shows the known amino acid signals implicated in 
targeting proteins to the cellular secretory pathway. 
While this signal only partially accounts for efficient 
exit from the ER, mutation of this signal has been 
demonstrated to reduce accumulation of protein in 
COPII vesicles[260]. Analysis of the Tax amino acid 
sequence has revealed the presence of a number of 
putative secretory signals within the carboxy-terminal 
domain, of which two putative secretory signals, DHE 
and a four amino acid di-hydrophobic tyrosine-based 
motif (YTNI), were found to be essential for Tax 
secretion[261]. Additionally, Tax was shown to interact 
with a number of proteins (Fig. 3) involved in the 
cellular secretory pathway[261,262] suggesting that release 
of Tax into the extracellular environment is a regulated 
event that is facilitated by the interaction of Tax with 
cellular secretory pathway proteins and the presence of  
 
Table 1: Amino acid signals implicated in targeting proteins to the 

cellular secretory pathway 
Sorted protein  Single sequence  Role of signal sequence 
Di-acidic:   
VSV-g (virus) DXE Cargo concentration and 
  exit from ER 
Syspl (yeast) DXE Binding to 23 sec /24 sec of 
  COPII coat 
Kir 1.1 (mammalian) DXE ER export 
Kir 2.1 (mammalian) DXE ER export 
Di-hydrophobic tyrosine-based   
SIV env (viral) YRPV ? 
HIV gp 160 (viral) YSPL ? 
TGN38 (mammalian) YQRL Targets protein to the TGN 
Emp46p (yeast) YYMF ER export/localization to 
  Golgi 
D-hydrophobic tyrosine-based:   
ERGIC-53 (mammalian) FF ER export 
Sysp 1(yeast) FF Non-functional 
P24 family (mammalian) FF Binding to 23 sec COPII 
  component in vitro 
D-hydrophobic Di-leucine: 
Emp24 (yeast) LV ER export/incorporation 
  into COPII vesicles  
Vam3p (yeast) LL Sorting to golgi 
Erv41p-Erv46p (yeast) IL Packing into COPII vesicles 

critical secretory signals within the carboxy-terminal 
domain of Tax. Once released, Tax could work as an 
extracellular effectors molecule, the minute quantity of 
which may cause major pathogenic changes. 
 
Role of extracellular tax in HTLV-1 
neuropathogenesis: Extracellular Tax has been 
shown to induce the production of TNF-α from a 
human neuronal cell line at a concentration that has 
been shown to be produced by HTLV-1-infected 
cells[263,264]. Release of TNF-α may result in both an 
autocrine and paracrine  cytokine-mediated 
destruction of neuronal tissue. Other pathologic 
processes observed in HAM/TSP patients include 
demyelination of CNS neurons, which may also be a 
direct effect of extracellular Tax[263,265]. In addition to 
neurons, adult human microglial cells were also 
shown to secrete TNF-α, IL-1β and IL-6 in response 
to Tax[266]. These observations correlate with 
additional studies demonstrating that HTLV-1-
infected microglial cells secrete both TNF-α and IL-6 
but not IL-1β, suggesting that Tax may have a 
paracrine   effect   on   other   Tax-producing   cells[266]. 
 

 
 
Fig. 3: Components of the cellular secretory pathway 

important for nucleocytoplsmic shuttling, 
endoplasmic reticulum to golgi transport and 
post-golgi transport to the plasma membrane. 
While NTF p97 may facilitate nuclear import of 
Tax, CRM1 and calreticulin may facilitate its 
export through the nuclear pore complex. Tax is 
likely targeted to the secretory pathway by being 
transported into the Endoplasmic Reticulum 
(ER). Once in the ER, Tax likely moves to the 
Golgi by inclusion into COPII vesicles. Amino 
acid signals within Tax including 330DHE332 and 
312YTNI 315 were shown to be important for 
targeting Tax to the Golgi. A portion of Tax 
may also be returned to the ER via retrograde 
transport by inclusion into COPI vesicles. In the 
Golgi, Tax is likely included into secretory 
vesicles through its interaction with SCAMPs 
and vSNAREs including SNAP23 
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The effects of extracellular Tax have not been limited 
to the CNS, primary human PB macrophages have also 
been shown to secrete TNF-α, IL-1 and IL-6 in 
response to extracellular Tax[266]. Recently, cell-free 
Tax has been demonstrated in the CSF of HAM/TSP 
patients[250] indicating that Tax is available for immune 
recognition by APCs. Extracellular Tax released from 
Tax-producing cells by secretion or apoptosis and 
necrosis may be internalized by professional APCs. Tax 
peptides presented in the context of MHC by APCs 
would result in lysis of Tax-expressing cells by Tax-
specific CD8+ T cells. Either production of toxic 
molecules or specific cell lysis could result in 
significant CNS damage similar to that observed in 
HAM/TSP. DCs are the most potent APCs and are of 
particular significance in the context of HTLV-1 
pathogenesis. Development of HAM/TSP is associated 
with rapid maturation of DCs[267], while ATL is 
associated with a defect in their maturation[268]. DCs 
obtained from the PB of HAM/TSP patients were found 
to be infected with HTLV-1[269]. Similarly, DCs can be 
infected with HTLV-1 in vitro and when subsequently 
matured, can stimulate autologous CD4+ and CD8+ T 
cells[270]. Therefore, we hypothesized that DCs and 
other APCs might play a critical in the induction of 
Tax-specific immune response during the progression 
of HAM/TSP. In initial studies, the effects of 
intracellular versus extracellular and retrovirally-
introduced Tax on murine DCs[271] have been analyzed. 
We have also studied activation and maturation of 
primary human monocyte-derived DCs as well as 
myeloid DCs in response to purified Tax and observed 
that Tax induces the secretion of proinflammatory 
cytokines and β chemokines from DCs[272,273] and 
modulates DC function toward a Th1 type immune 
response[274]. Moreover, DC-mediated priming of Tax-
specific CTL response was demonstrated both in vitro 
and in vivo (Manuel and Jain, unpublished 
observations). These studies strongly suggest that DCs 
represent a major factor in HAM/TSP pathogenesis. 
The well-defined target of Tax activity, NF-κB coupled 
with protein kinases and phospholipase C, was also 
found to be critical for Tax-mediated DC activation and 
maturation[274]. Collectively, these studies have 
provided important insight into the molecular and 
immunologic mechanisms underlying the development 
of neuroinflammatory syndromes associated with 
HTLV-1 and other retroviruses. However, several 
outstanding questions still remain unanswered relative 
to the restricted epidemiological distribution of 
HAM/TSP, viral control mechanisms in asymptomatic 
carriers, progression to HAM/TSP and possible 
therapeutic interventions.  

 CONCLUSION 
 
 HIV-1 CNS disease is largely dependent on the 
trafficking of infected monocytic cells from the 
periphery across the blood-brain barrier, where virus is 
subsequently disseminated to susceptible cell 
populations within the brain including microglia, 
perivascular macrophages and astrocytes, which 
produce neurotoxic viral proteins such as Tat, gp120, 
Nef and Vpr and cytokines and chemokines that induce 
a positive feedback mechanism for further recruitment 
during the course of pathogenesis. HTLV-1 during 
neuroinflammatory disease is also characterized by an 
over-stimulation of the immunologic compartment, 
however instead of monocytes and macrophages it is 
CD8+T cells specific for Tax11-19 along with increased 
inflammatory cytokines and chemokines. Interestingly, 
as described above and restated here in both cases, 
pathogenesis is caused primarily from the inflammatory 
response to the neurotoxic proteins. 
 Unfortunately, in the case of both diseases there are 
very few treatment options for patients with retrovirus-
induced neurologic disease. In the case of HIV-1 while 
antiretroviral therapy has had great impact on the life 
expectancy of patients and impacted their viral load and 
peripheral disease, it has increased the prevalence of 
neurologic disease[4]. With the widespread use of 
Highly Active Antiretroviral Therapy (HAART), a 
more subtle form of CNS dysfunction, termed Minor 
Cognitive Motor Disorder (MCMD), has become more 
common[7,8]. In the HAART era, it is estimated that 
~10% of HIV-infected adults develop HAD, however, 
the appearance of MCMD may be several times more 
common, involving as many as 30% of the HIV-
infected population[8,275]. Furthermore, the clinical 
presentation of MCMD has been associated with 
neuropathological changes characteristic of HIV 
encephalitis (HIVE) and MCMD is associated with a 
worse overall prognostic outlook[7,8,275]. One means of 
explaining the development of MCMD is that the low-
level viral replication associated with successful 
HARRT regimens, may lead to slowly progressing 
neurodegeneration. This is consistent with the longer 
lifespans of patients receiving HAART and possibly 
with the inability of certain antiretroviral drugs to 
effectively penetrate into the brain[276]. In addition to 
this, what is known about HIV-1 CNS disease is mostly 
from studying subtype B viruses. HIV-1 Subtype B 
viruses only cause a fraction of the worlds infection 
with subtype C infection being responsible for 
approximately half of the world’s HIV-1 infections. 
Unfortunately, little is known about subtype C viruses 
and there role in neurologic disease and it is here where 
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a majority of the future research will need to be 
performed. 
 HTLV-1 neurologic disease is also poorly 
understood with little or no treatment available. Many 
questions still remain unanswered as to what drives an 
infected individual to develop ATL versus HAM/TSP. 
These have been discussed above, however, the viral 
protein Tax plays a important role in 
neuropathogenesis. The levels of this protein being 
secreted and its presentation by dendritic cells to T cells 
plays a major role in HAM/TSP. Consequently, this 
immunologic pathway may provide an opportunity to 
identify novel therapeutic interventions. 
 Overall these two human retroviruses share many 
similarities. Their ability to cause neurologic disease is 
just one of the many. The fact that they do so in very 
similar ways is a testament to how these viruses may 
have evolved within their human hosts. Tat and Tax are 
just another example of this similarity, in that, both of 
these viral proteins interact with their viral LTRs and 
ultimately act as secreted proteins potentially causing 
dysregulation of a number of cell populations. It is 
through the study of the similarities and differences 
between these two viruses that scientists continue to 
learn more information concerning the pathogenic 
mechanisms of these two important human pathogens 
and their role in neurologic disease.  
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