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Abstract: The endeavor of this paper is to calculate frequencies and 

critical velocity of pipe carrying incompressible fluid are obtained using 

standard finite element method. Finite element beam type with two 

degrees of freedom per node was used. The natural frequencies of our 

system are calculated by using a program developed on MATLAB. The 

results are compared with those predicted by the differential 

transformation method and with other results listed in the literature, 

where several examples were studied, for pipes with different boundary 

conditions: Pinned-pinned and clamped-pinned. We determine the 

influence of the effect of mass ratio, length and elastic foundation of the 

proper frequencies and the critical velocity for fluid conveying pipe to 

study and analyze instability with its concepts.  
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Introduction 

Pressure pulsations and mechanical vibrations in pipe 

systems may cause excessive noise and may even lead to 

damage of piping or machinery. The excitation 

mechanism can be hydraulic or mechanical (Antaki, 

2003). In fluid-filled pipe systems pulsations and 

vibrations will be strongly coupled. The elastic fluid 

coupling forces depend on the relative movement of the 

structure, it gives coupling effects from mass, stiffness, 

damping, the coupling can cause dynamic instability by 

negative damping and one then has a fluid-elastic 

instability. We will be particularly interested in the case 

of a pipe with an internal flow, (Païdoussis, 1970; 1981; 

Païdoussis and Besancon, 1981; Païdoussis and Curling, 

1985; Païdoussis and Moon, 1988; Païdoussis et al., 2007). 

The first works on the subject are however those of 

(Bourrières, 1939), who obtained the linear equations of 

motion and made experimental observation of the 

oscillations of a cantilevered pipe. The effect of internal 

fluid on free vibration of a pipe was studied by 

(Païdoussis and Li, 1993).  

Dahmane et al. (2016) have studied the effect of 

Coriolis force of the internal fluid of pipeline by analytical 

approach using Galerkin method. Results show that 

Coriolis force reduces frequencies, especially at higher 

speeds. There are others who used analytical method to 

study dynamic of pipe with internal fluid under different 

parameters as, differential quadrature method (Lin and 

Qiao, 2008), differential transformation method (Ni et al., 

2011) and such a generalized integral transform technique 

(Gu et al., 2013). The results showed that flow velocity 

reduces the first natural frequencies, which affects the 

stability of the system. Independently analytical methods, 

numerical methods are very effective and faster to treat a 

physical problem of vibration under internal flow, such as 

finite element method (Lee and Park, 2006; Sadeghi and 

Karimi-Dona, 2011; Mostafa, 2014; Jiya et al., 2018; 

Mouloud et al., 2020). The numerical results showed that 

the geometrical parameters have a great influence on the 

stability of the pipeline systems. 

All these studies did not address the issue of the 
system stability, except what we find in (Doaré and de 
Langre, 2002a; 2002b; 2000; 2006); they have 
calculated critical velocity of liquid under the effect of 
physical and geometrical parameters of the system and 
then study the two aspects of instability. Nevertheless, 
all these works do not take into account the fluid whether 
Newtonian or not, the effect of the parameter different 
on dynamic instability with different boundary 
conditions, study the margin (range) of static and 
dynamic instability by the numerical approach. 
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In the present study calculation methods have been 

developed for the analysis of vibrations in fluid-filled 

pipe systems. The analytical model is based on the 

Newtonian approach. The practicability of the 

calculation model and the effects of fluid-structure 

interaction are illustrated by calculations for some simple 

systems, for pipes with different boundary conditions 

pinned-pinned and clamped-pinned. 

The numerical methods were developed, modeling of 

solid-fluid was conducted by the standard finite element 

method; finite element beam type with two degrees of 

freedom per node was used. The frequencies of the 

system are calculated using a program developed on 

MATLAB language. After studying the convergence and 

validated program with (Ni et al., 2011), several 

examples were studied. The study of these examples 

enabled us to determine the influence of these physical 

and geometrical parameters of the natural frequencies 

and consequently their stability.  

Derivation of Governing Differential 

Equation 

The problem to be considered is the vibration 
analysis of a fluid conveying pipe system on an elastic 
foundation. The derivation of the equation is based on 
Euler-Bernoulli elementary beam theory. The physical 
model of conveying pipe carrying fluid is shown in Fig. 
1a and 1b shows forces on fluid element while, Fig. 1c 
shows forces and moment of pipe element.  

 

 
(a) 

 

 
 (b) (c) 

 
Fig. 1: (a) Representation of the pipe-conveying fluid resting on an elastic Winkler-type, (b) forces on fluid element; (c) forces and 

moments on pipe element δs (Païdoussis, 1998)  
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Fig. 2: Pinned-pinned pipe 

 

 
 

Fig. 3: Clamped-pinned pipe 
 

The pipe is long and straight L conveying an 

incompressible fluid with steady speed U; the motions 

are small δs. 

The pipe rests on an elastic foundation Winkler-

model soil of modulus KX, ms and mf the masses per unit 

length of the pipe and the fluid, respectively. The 

Boundary conditions are: 
 
a. Pinned-Pinned Pipe (Fig. 2): 
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b. Clamped-Pinned Pipe (Fig. 3): 
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The equation for conveying pipe carrying fluid on 

a Winkler elastic foundation is given as (Doaré and de 

Langre, 2000): 
 

 
4 2 2 2

2

4 2 2
2 0f f s f
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   
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 (3) 

 

Finite Element Discretization 

The Equation (3) is a fourth-order partial differential 

equation in two independent variables subject to various 

boundary conditions. It is not easy to get its analytical 

solution, but through the use of finite element method we 

get its numerical solution (Fig. 4). The equation of 

element deflection for straight two dimensional beam 

element could have the form (Rao, 2004): 
 

     
1

,
N

i ii
W X T N X W T


   (4) 

 
Where: 

[Ni] = Represent the shape function, 

Wi(T) = The function which represents the shape of the 

displacements and rotations at nodes (the 

generalized coordinates) 
 

Therefore, Equation (4) becomes: 
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and: 
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Determination of the Element Matrices 

By using the energy principle. The potential 

(deformation) energy and the kinetic energy of the solid 

element can be expressed by (Rao, 2011; Shizhong et al., 

1998; Zhai et al., 2011): 
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X 

X 

Y (X, T) 
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The kinetic energy of the fluid element can be 

expressed by (Sadeghi and Karimi-Dona, 2011): 
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The potential energy over the length of elastic 

foundation can be expressed by (Mostafa, 2014): 
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The different elementary matrices can be represented 

as follows: 
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where, [Ks], [Kf], [M], [C] and [F], respectively, the 

stiffness (structure and fluid), the masses, the 

damping and the foundation matrices of the system 

(Jiya et al., 2018). 

Analyze the Dynamic Eigenvalues 

Application of the Lagrange principle: 

 

0
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  (16) 

 

The standard equation of motion in the finite element 

form is: 

 

          0M q C q K q     (17) 

 

where, [M] = [Ms] + [Mf], [K] = [Ks] - [Kf]. 

The governing equation of the system (structure plus 

fluid) can be transformed into its state-space coordinates: 
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where the state variable is: 
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The matrices [E] and [G] are calculated through 

variable changement as the following: 
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Fig. 4: Beam element nodal displacements 
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Therefore, we can obtain the natural frequencies 

(Eigen-values) and mode shapes (Eigen vectors) by 

solving the mathematically well-known characteristic 

equation of: 

 

0I Hz     (22) 

 

where, λ is Eigen-values of the system and I is a unity 

matrix and: 
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The solution of Equation (22) can be written in the 

following form: 
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We obtain a homogeneous equation, which 

corresponds to a generalized Eigen value problem of 

our system: 

 

 

 1 1

0 0 0

0 0

EI I

EM K M C I




 

        
        

         
 (26) 

 

We can compute the Eigen-values numerically from 

Equation (26) and obtain the Eigen-frequencies of 

conveying pipe carrying fluid for different various 

parameter values. The Eigen-values are complex: 

 

Rem m mj     (27) 

 

where, λm is the complex eigenvalue, Re is real part of 

Eigen-frequencies and the imaginary part of these roots 

represents the natural frequencies of damped system and 

m = 1, 2, ….N; j = 1 , The critical flow velocity ucr is 

characterized by max (Rem = 0), 

The characteristic roots m is obtained here by using 

the (eig) function of MATLAB. Using the non-

dimensional parameters (Païdoussis, 1998), we obtain: 
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Results and Discussion 

In the current work, we rely on calculating the critical 

fluid velocity to study and analyze instability with its 

concepts. Results will be discussed for various values of 

β, length L, elastic foundation k (Winkler type) for pipes 

with different boundary conditions. Because the problem 

is very ramified, we use incompressible fluid and the 

physical parameters as: 

 

 Elastic modulus of pipe is (211 GPa) 

 Pipe length is (1÷2 m) 

 Fluid density is (1000 kg/m3) 

 Pipe density is (7850 kg/m3) 

 Pipe thickness for (β = 0.1÷ 0.5) 

 Outer diameter of the pipe is (0.03 m) 

 

Pinned-Pinned Pipe with Internal Flow 

The object of this section is the determination of 

proper frequencies for fluid conveying pipe without 

foundation. First, the validation of our program was 

made by doing a convergence study, convergence was 

performed for a velocity U = 100 m/s Fig. 5a, another 

study for critical velocity where U = 175 m/s, the results 

obtained are shown in Fig. 5b. The Fig. 5a shows that 

there is very fast convergence for the first two modes 

according to the number of elements and that for two 

different fluid velocities. Convergence is obtained for the 

third mode with 13 elements. On the other hand, the 

numerical results are given and compared with those 

obtained by DTM (Ni et al., 2011) for pinned-pinned 

pipe with internal flow; the results obtained 

numerically are similar to those obtained by the 

analytical approach (Fig. 6). Figures 7 and 8 represent 

the first Eigen-modes of pipe on simple supports for 

different mass ratios, (a) dimensionless frequencies, (b) 

natural frequencies (Hz), it appears clearly on these 

figures that the mass ratio influences the first modes 

and consequently on the critical velocity and the 

stability of our system, these figures clearly show the 

distinction between the Eigen-modes and the combined 

modes. We notice that the third critical speed is 9.44; 

this is not what we found in the previous literatures. 

The Fig. 9 (physic results) and the Fig. 10 (Non-

dimensional frequency) show the natural frequencies as 

a function of the fluid velocity for different length with 

two mass ratio. We observe in the Fig. 9 that the 

critical speed is 170.27 m/s for a length of 1 m and 110 

m/s for 2 m, we also note that the previous studies have 

not addressed the effect of these parameters; obviously 

the length of the pipe has destabilizing effect on the 

vibration of the system. The Fig. 10 shows the field of 

instability, where the flow velocity is critical or rather 

the pulsation of the system is zero, as we note that this 

instability margin changes according to length, which 

affects the stability of both types, we will explain in 

what follows this development in detail. 
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(a) 
 

 
 

(b) 

 
Fig. 5: Convergence of the first three natural frequencies of pinned-pinned pipe, (a) U = 100 m/s, (b) U = 175 m/s, β = 0.5 

 

 
 
Fig. 6: Dimensionless frequency for various values of u, for the lowest three modes of a pinned-pinned pipe conveying fluid, 

comparison DTM (Ni et al., 2011) (xxx) and FEM ( ), β = 0.1 
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(a) 

 

 
 

(b) 
 
Fig. 7: Three proper modes on fluid velocity function of pinned-pinned pipe conveying fluid, β = 0.3, (a) dimensionless frequencies, 

(b) naturel frequencies (Hz) 
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(b) 

 
Fig. 8: Three proper modes on fluid velocity function of pinned-pinned pipe conveying fluid, β = 0.5, (a) dimensionless frequencies, 

(b) naturel frequencies (Hz) 

 

  

 

 

 
Fig. 9: Effect of length on the natural frequency of the pinned-pinned pipe at different fluid velocities, β = 0.5 
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Fig. 10: Effect of length on the natural frequency of the pinned-pinned pipe at different fluid velocities for β = 0.3 and β = 0.5 
 

 
 

Fig. 11: Convergence of the first three natural frequencies of clamped-pinned pipe, U = 150 m/s, β = 0.5 
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(a) 

 

 
(b) 

 
Fig. 12: Three proper modes on fluid velocity function of clamped-pinned pipe conveying fluid, (a) β = 0.3, (b), β = 0.5 

 

Clamped-Pinned Pipe with Internal Flow 

In this section, the determinations of parameters 

frequencies for fluid conveying pipe, without and with 

foundation are calculated using the FEM. Beginning, 

the convergence was performed for a velocity U = 150 

m/s, the results obtained are shown in Fig. 11, 

convergence is obtained for the three modes with 13 

elements. Figure 12 present the natural frequency of 

the pipe at different fluid velocities for β = 0.3 and β 

= 0.5. Over an interval [0 12], we notice almost same 

result and same instability range. The Fig. 13 shows 

the evaluation of these modes as a function of the 

speed of the fluid for different lengths L for two β. 

This figure appears that the increase in β implies a 

reduction in the thickness, that is to say a gain in the 

mass of the empty pipe, this increase has no great 

influence on the first mode while its influence the 

higher modes. For low velocity it is a gain, but at high 

velocity its effect is destabilizing. 

The length has an effect of reducing the rigidity, 

which lowers the frequencies of the system according 

to the speed of fluid and consequently quickly reach the 

first critical velocity of static instability. For L = 1 m, 

the instability range is equal 3.55, is reduced to 1.96 for 

L = 2 m. The effect of the elastic is stabilizing for the 

system, as show in the Fig. 14 and the length weakens 

the rigidity of the system and therefore has a 

destabilizing effect. In addition we note that the 

instability range of the first mode is reduced as a 

function of the stiffness. For the parameter k = 1 and L 

= 1, the instability range is equal 3.11, the range is 1.33 

for the parameter k = 1000, Fig. 14. 
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Fig. 13: Effect of length on the natural frequency of the pipe at different fluid velocities 
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Fig. 14: Effect of foundation stiffness on the natural frequency of the clamped-pinned pipe at different fluid velocities β = 0.3 
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velocity exceed a threshold called critical velocity of 

instability, when the first frequency is zero. According 

to the first two cases, we note the distinction between 

Eigen modes and combined modes (first mode, 

combination between the first and second, second 

mode, combination between the second and third, third 

mode. We have noticed that increasing β slightly 

decreases the rigidity of the system (loss of rigidity) 

and the system consequently decreases their natural 

frequencies. The typical elastic foundation of Winkler 

increases the rigidity of the system and consequently 

the natural frequencies and the critical velocity. What 

distinguishes most of this research from others is its 

discussion of the axis of instability and what it means 

in this field that is why we did some analysis and 

calculation in this research, hoping to continue with 

other work in the same field. 
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