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Abstract: In this research, the first natural frequencies and critical 

velocities of a fluid flow-conveying pipe are obtained with finite element 

method. By discretizing the structure wall and fluid flow, starting from 

beam type with two degrees of freedom per node. We determine the 

equation of motion from the fluid-structure coupling using Lagrange 

energy principle. Parameters frequencies and critical velocity of fluid 

flow are calculated by using a program developed on MATLAB. The 

results are compared with those predicted by the differential 

transformation method. Stability and instability properties of the system 

are analyzed after calculating the natural frequencies and the fluid critical 

velocity in terms of various parameters. 
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Introduction 

When a structure is contacted with a fluid, the elastic 

compartment undergoes a significant change; the 

increase of the natural frequencies observed during 

interaction of fluid with structure can even affect the 

system stability. Study of this subject is much ramified, 

Païdoussis (1970; 1981; 2014; Païdoussis and Besancon, 

1981; Païdoussis and Curling, 1985; Païdoussis and 

Moon, 1988; Païdoussis et al., 2007) is the most famous 

researcher on the topic of mating and thanks to his 

research we obtained the linear and non-linear equation 

of the pipes motion under the influence of many factors. 

All these researches were gathered with others in a book 

(Païdoussis, 2014), in which he explores the concept of 

pipelines stability and instability. Doaré and de Langre 

(2002a-b; 2000; 2006), he touched better on the issue of 

instability, we find in his study that he studied 

instability in its two types (dynamic, static) and that is 

by calculating the frequencies in terms of the fluid 

critical velocity. A significant amount of research has 

been carried out the dynamics of cantilevered pipe-

conveying fluid, by means of linear mathematical 

models (Païdoussis, 2014) and there are other work in 

the same context, analytical, such as Galerkin method 

(Chellapilla and Simha, 2007; 2008), semi-analytical, 

by DQM in (Qian et al., 2009) and by DTM in (Ni et al., 

2011), numerical by finite Element Method (FEM), in 

(Sadeghi and Karimi-Dona, 2011; Mostafa, 2014; 

Dahmane et al., 2016). There are many contemporary 

studies dealing with the subject of pipe vibration in term 

of fluid flow under physical and geometrical effects 

(Ghayesh et al., 2018a-b; Jiya et al., 2018; Zhang et al., 

2018; Liang et al., 2018; Wang et al., 2018; Liu et al., 

2018; Sazesh and Shams, 2019). All these studies did not 

take into consideration the concept of the range (field) 

instability as well as the analysis and the instability 

parameters, which constitutes an obstacle and challenge 

for engineers, especially in the heat exchangers as 

nuclear production, industry pipelines, fuel pipes in high 

duty engines, hydropower systems and solution mining 

applications. 

In the present study, calculation methods have been 

developed for the free vibrations analysis of cantilevered 
pipe conveying fluid. The numerical methods were 
developed, modeling of structure (pipe)-incompressible 
fluid and was conducted by the standard finite element 
method, using beam type with two degrees of freedom 
per node. The proper frequencies and critical velocity of 

the system are calculated using a program developed on 
MATLAB. This allows us to study instability and 
discover its most important characteristics. 
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 (b) (c) 

 
Fig. 1: (a) Cantilevered pipe-conveying fluid resting on an foundation elastic Winkler-type, (b) forces on fluid element; (c) forces 

and moments on pipe element δs (Païdoussis, 2014) 

 

Differential Equation of Motion 

The problem to be considered is the vibration 

analysis of a fluid conveying pipe system on an elastic 

foundation Winkler-model. The derivation of the 

equation is based on bernoulli-euler elementary beam 

theory. The physical model of system is shown in Fig. 1a 

and 1b shows forces on fluid element, Fig. 1c shows 

forces and pipe element moment. 

The equation for conveying pipe carrying fluid on a 

Winkler elastic foundation is given as (Dahmane et al., 

2016): 
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where, the pipe is long and straight L conveying an 

incompressible fluid with steady speed U; the motions are 

small δs. The elastic foundation Winkler-model is KY, ms 

and mf the masses per unit length of the pipe and the fluid, 

respectively (Fig. 2). The Boundary conditions are: 
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where, the non-dimensional parameters (Païdoussis, 

2014), we obtain: 
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where, the potential (deformation) energy and the kinetic 

energy of the solid element expressed by: 
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The kinetic energy of the fluid element can be 

expressed by (Sadeghi and Karimi-Dona, 2011): 
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The potential energy over the length of elastic 

foundation can be expressed by (Ni et al., 2011; 

Sadeghi and Karimi-Dona, 2011): 
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The equation of element deflection for straight two 

dimensional beam element could have the form (Rao, 

2011): 
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where, [Ni] represent the shape function and Wi(T) is the 

function which represents the shape of the displacements 

and rotations at nodes (Fig. 3). 

Therefore, Equation (8) becomes: 
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Forming shape functions: 
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where, 0  x  1 (Fig. 4).
 

 

 
 

Fig. 2: Clamped-free Pipe with fluid 

 

 
 

Fig. 3: Beam element nodal displacements; where, W1, 1, W2 et 2: Are the displacements and rotations at the nodes. 
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Fig. 4: Reference element 

 

Lagrange’s Principle 
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The standard equation of motion in the finite element 

form is: 
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Where: 

[M] = [Ms] + [Mf]: Elementary mass matrix of the system 

[C]: Elementary damping matrix of the 

system 

[K] = [Ks] - [Kf]: Elementary stiffness matrix of the 

system 
 

Considering the displacement vector as: 
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λ is eigenvalues of the system and the {E} corresponding 

eigenvectors of this value. 

The solution of Equation (12) is very complicated 

with presence of damping, so we use the variable change 

method (state-space): 
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The matrices [E] and [G] are calculated through 

variable-change as the following: 
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And the solution of equation is sought in the 

general form: 
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The system equation of government can be 

transformed from state space by: 
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I is a unity matrix. 

We ask ourselves: 
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Eigenvalues are complex; they give in the form: 
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Where: 

Re: The real part of the eigenvalue and is the damping of 

our system 

ω: The imaginary part of the eigenvalue, is therefore the 

proper pulsation of system 
 

The stability and instability of the system under 

consideration is determined by the sign of real part and 

the natural frequencies values (the imaginary part) of the 

complex Eigen-value. 

Results and Discussion 

In studying and analyzing the concept of instability, 

the fundamental natural frequency of a pipe decreases 

with increasing fluid velocity. There are certain cases 

where a decrease in this natural frequency can be very 

important and with large fluid velocities, the pipe may 

become unstable. Results will be discussed for various 

values of β, length L, elastic foundation k (Winkler type) 

and the instability parameters for clamped-free pipe. The 
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elastic modulus of pipe is (E = 207 GPa), pipe length is 

(L = 1÷2 m), fluid density is (mf = 1000 kg/m3), pipe 

density is (ms = 7850 kg/m3), pipe thickness for (β = 0.1÷ 

0.7) and the outer diameter of the pipe is (0.03 m). 

Frequencies results are displayed in terms of flow 

velocity and several parameters by figures, which come 

in three cases as follows: Mass ratio effect, length effect 

and elastic foundation effect. 

Mass Ratio Effect 

We calculated the natural frequency for first Eigen 

modes of clamped-free pipe for mass ratios, according to 

the fluid speed, Fig. 5 and 6. 

Firstly, the program has been validated with 

reference (Ni et al., 2011), by calculating the first 

three dimensionless frequency as a function of the 

fluid velocity for cantilevered pipe with internal flow, 

where β = 0.5. The Fig. 5 shows that the results 

obtained numerically are similar to those obtained by the 

analytical approach. The rigidity of a fixed-free beam 

system is very low than the other boundary conditions, it is 

preferable to use a dimensioning by calculating the natural 

frequencies. The Fig. 6 shows that the free vibration of the 

clamped-free pipe under an internal flow is very sensitive to 

the variation of mass ratios.  

 

 

 
Fig. 5: The imaginary component of the dimensionless frequency as a various values of fluid velocity (u), for the lowest three modes 

of a clamped-free pipe conveying fluid, comparison DTM (Ni et al., 2011) (ooo) and FEM (            ), β = 0.5 
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Fig. 6: Naturel frequency (Hz) for three proper modes on fluid velocity function of cantilevered pipe conveying fluid, L = 1, (a) β = 

0.3, (b), β = 0.5 

 

 
 

 
 

Fig. 7: Effect of length and mass ratio on the natural frequency of the cantilevered pipe at different fluid velocities 
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Fig. 8: Effect of foundation stiffness on the natural frequency of the clamped-free pipe at different fluid velocities, (a) k = 1, (b) k = 

10, β = 0.5 

 

Length Effect 

We calculated the frequency of the first three Eigen-

modes clamped-free pipe for two mass ratios, according 

to the fluid speed where L = 1.5 m, see the Fig. 7. 

We see in the Fig. 6a that the first frequency is 25 Hz, 

in the case of a fluid at rest (no flow) for a mass ration 

0.3 and for β = 0.5 the first frequency is 22 Hz, Fig. 6b. 

the same remark for the second frequency which passes 

from 140 Hz to 150 Hz, however for the third mode, the 

frequency passes from for 375 Hz for β = 0.5 to 425 Hz 

for β = 0.3. In this case the pipe comparable to a beam 

(U = 0) i.e., all its natural frequencies are imaginary.  

Foundation Effect 

We calculated the frequency of the first three Eigen-

modes clamped-free pipe on an elastic foundation with 

two low values, according to the fluid velocity, for two 

lengths, Fig. 8 (L = 1 m), Fig. 9 (L = 1.5 m). 

In the case of the flowing fluid, the first eigen modes 

are not similar for different mass ratio. The critical 

velocity is 76 m/s for β = 0.5 and for β = 0.3, the critical 

speed is 110 m/s. when one increase the velocity, one 

observes first of all a stabilization of the system and all 

the natural frequencies see their imaginary part 

decreasing at the critical velocity of instability. We are 

now interested in the stability conditions of such system, 

we see in the Fig. 6 (L = 1) and the Fig. 7 that the increase 

in the length quickly destabilizes the system which 

depends on β. The effect of the elastic foundation 

characterized by (k), the variation of the first modes of 

pipe under an internal flow is given by the Fig. 8 and Fig. 

9 for two lengths, where mass ratio is 0.5. So the figures 

show double effect of the foundation and the length.  
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Fig. 9: Effect of foundation stiffness on the natural frequency of the clamped-free pipe at different fluid velocities, L = 1.5, β = 0.5 
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Fig. 10: The evaluation of the critical speed of instability as a function of the mass ratio for a reference length L = 1 
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Fig. 11: Curve of the instability of the embedded-free pipe, highlighting the destabilizing effect of the length of the system 

 

 
 

 
 
Fig. 12: Curves of the instability of the embedded-free pipe for different elastic foundations, highlighting the destabilizing effect of 

the length and the destabilizing effect of the mass ratio, (a) k = 1, (b) k = 10 
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By studying dynamics (Flutter) where the critical 

velocity varies according to the masse ratio in interval 

[0.1÷0.7] (Fig. 10), we find that the variation curve takes 

a hyperbolic form. The Fig. 11 shows the variation of the 

critical velocity as a function of the length; we note that 

this curve has the same shape as the curve previous figure. 

We found here that the parameter β has a destabilizing 

effect. Critical velocity is very sensitive to variation in 

length. The Fig. 12 represents the influence of the length 

on the variation of the critical velocity for different 

stiffness with different mass ratio. For k = 1, we find that 

the slopes straighten around L = 1.5. We repeated the 

same work for k = 10, the curve have the same gaits. 

Conclusion  

The numerical aspect gives solutions in complex 

planes by determining the eigen-modes, an imaginary 

part to present the eigen-frequencies according to the 

fluid velocity for various parameters. The first 

observation that we can make that the natural 

frequencies of the system depends on the fluid velocity. 

We observe that instability appears when the velocity 

exceeds a threshold called the critical instability velocity. 

The critical velocity of the fluid varies according to the 

mass ratio and translates the stability of our system, 

while the foundation increases the system rigidity and 

consequently the natural frequencies and the critical 

speed. It has been observed that there is an absence of 

static buckling instability.   
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