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Abstract: This work aims at developing a reliable and predictive QSAR 

model which allows, on one hand, an exploration of the main molecular 

descriptors responsible for the inhibitory activity towards the 

Acetylcholinesterase enzyme and, on the other hand, predict the inhibitory 

activity of new compounds before testing them experimentally. This study 

involves a series of DL0410 and its 29 DL0410 derivatives. The Multiple 

Linear Regression (MLR) analysis is carried out to derive the QSAR 

model. The results indicate that the QSAR model is robust and possesses a 

high predictive capacity. 
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Introduction 

Cholinesterase inhibitors (Acetylcholinesterase, 

Butyrylcholinesterase) are currently the most 

established treatment strategy in Alzheimer’s Disease 

(AD) (Cummings et al., 2018; Vellas et al., 2007). In 

order to reach a better treatment of AD, much focus was 

put on the development of cholinesterase inhibitor drugs 

(Deb et al., 2012). 

Nowadays, the development of any particular drug 

for human consumption takes an average of 10 to 15 

years before being allowed to enter the marketplace, in 

addition to the costly process. For this reason, the use 

of alternative methods such as QSAR/QSPR is cheaper, 

faster and indispensable (Ridzuan et al., 2012; Slater 

and Kontoyianni 2019). In the present work, a QSAR 

study was carried out on a series of 30 compounds 

DL0410 and its 29 derivatives which have an inhibitory 

effect against the Acetylcholinesterase enzyme 

(AChE). The objective of this application is to develop 

a reliable and predictive QSAR model for the 

determination of the inhibitory activities of new drug 

candidates and to examine factors other than volume 

that can control the inhibitory concentration of these 

compounds (Patel et al., 2014). 

Quantitative Structure Activity Relationship 

(QSAR) 

QSAR: is a mathematical model that links the 

structural features of the compounds (i.e., molecular 

descriptors) to their quantity showing specific biological 

activity (Rauf et al., 2019). 

Methodology  

Database and Calculation Methods 

The QSAR model was generated using 30 

compounds DL0410 and its 29 derivatives, 20 

molecules used as a training set and 10 molecules as 

test set. The structures and the experimental values of 

the biological activity were taken from the published 

literature (Pang et al., 2017). 

The quantum chemical calculations were carried out 
assuming the Generalized Gradient Approximation 
(GGA) within the framework of the Density Functional 
Theory (DFT). This task was achieved with the software 
package DMol3 in Materials Studio in order to optimize 
the molecule geometry and to obtain the quantum 
chemical parameters. The geometric optimization was 
made by the Triple Numerical with Polarization (TNP) 
basis set and the functional exchange-correlation (BP) 
(Musa et al., 2012a; 2012b). The quantum chemical 
parameters calculated were HOMO, LUMO, Molecular 
sizes (area and volume) and sigma profiles of all the 
compounds. The other descriptors were obtained from 
the Swiss ADME website. 

MLR Model Elaboration 

The Multiple Linear Regression (MLR) analysis 

using stepwise regression was carried out to derive 
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QSAR model coefficients. The best obtained QSAR 

model for acetylcholinesterase (ES: 3.1.1.7) inhibition 

activity is given as follows: 

 

pIC50 = 45.33+0.013*Volumle-7.09*Gap-0.19*DMM 

+0.99*Oint-2.2*Nint-0.48*Cyp+1.05*NAR +0.11*ROB 

+0.33*MR+8.63*LUMO 

 

 From the statistical analysis, the calculated coefficient 

of determination (R2) was equal to = 0.94, the root-mean-

square deviation (RMSE) was equal to = 0.260 and the 

Adjusted 2
aR  was equal to 0.88. The MLR model provides 

an accurate fit of the experimental data set and it is 

characterized by a high predictivity. The volume, 

Intracycle Oxygen, Non-Aromatic Ring, Rotatable Bonds, 

Molar Refractivity and LUMO are preceded by positive 

sign. Consequently, these parameters have an increasing 

effect on the dependent variable value PIC50. As for the 

Gap, Intracycle Nitrogen and cyclopropanes are preceded 

by a negative sign. Consequently, these parameters have 

a diminishing effect on the dependent variable PIC50. 

Most of the inhibitory concentration points (Fig. 1) 

are concentrated around the middle of the fit line, 

meaning that the considered compound has a similar 

inhibitory action. In general, this dispersion shows that 

the provided data were well matched by the MLR model 

Model Validation 

Internal Validation 

Cross-validation statistical procedure was used to 

evaluate the predictive power of QSAR model. The 

coefficient that describes this validation is given by the 

equation below (Katritzky et al., 2010): 

 

   
2 2

2 1 /pred obse obse mean

CV i i i iR y y y y      

 

In this case, the obtained 2

CVR  is 0.60. 

External Validation  

After getting the QSAR model, a series of 

molecules was tested by the retrieved model and 

compared with the experimental values. The results 

are shown in Table 1. where the experimental and the 

predicted values are close to one another. 

Applicability Domain  

The Applicability Domain (AD) is a specific physico-

chemical, structural or biological space (Sheridan et al., 

2004), which allows to define the area in which a 

compound can be confidently predicted (Katritzky et al., 

2010). In this study, the leverage method was carried out 

in order to determine the AD of the obtained model. The 

result is shown in Fig. 2. 

 
Table 1: Tested compounds pIC50 

Compound pIC50 (experimental) pIC50 (predicted) 

3.4 5.4788619 5.2123648 

3.5 5.3106911 5.4499948 

4.1 4.2640819 3.7478612 

4.2 5.5128616 5.7782385 

4.3 4.7594508 4.2963982 

4.4 4.804931 4.0373946 

5.1 6.05061 5.0325662 

5.2 5.4100504 4.4260751 

5.3 4.8513973 2.7336582 

6.1 7.2218487 6.1383127 

 
 

Fig. 1: Parity diagram (observed vs predicted) pIC50 values using MLR model 
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Fig. 2: Applicability domain of the QSAR model 

 

The blue circles represent the training set molecules 

and the green circles represent the test set molecules. All 

these compounds have a residual and levrage that does 

not exceed the threshold h* = 3 p/n. If an external 

molecule is outside the defined space of the model 

(h*˃3p/n), it is considered outside of the model’s 

applicability domain and will not have a reliable 

prediction (Oluwaseye et al., 2018). 

 

p: Number of descriptors + 1, 

n: Number of molecules (training set)   

Conclusion 

In this study the resulted QSAR model proved to be 

robust and possesses a high predictive capacity. The 

selected descriptors directly explain the structural 

features of the compounds responsible for the inhibitory 

activity of the Acetylcholinesterase. Therfore it can be 

concluded that the most active predicted compounds are 

characterized by a Gap, Intracycle Nitrogen and 

cyclopropanes which should not be elevated and the 

highe the number of, Intracycle Oxygen, Non-Aromatic 

Ring, Rotatable Bonds, Molar Refractivity, volume and 

LUMO the higher the pIC50AChE value. 
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