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Abstract: The use of information-theoretical methods can be highly 

valuable for the solution of biomedical data processing problems. Some of 

the problems that can be solved by those methods include: The assessment 

of the influence of diagnostic parameters, biomarkers and risk factors, on the 

emergence of disease; the discretization of diagnostic parameters; the 

analysis of a combined influence of a group of parameters; the partition of a 

group of diagnostic parameters according to the amount of diagnostic 

information contained in those parameters; the analysis of the parameters’ 

heterogeneity or variability and more. To illustrate the solution of those 

problems, we use a data base on diabetes patients. There are grounds to 

believe that an increasing application of information-theoretical 

methodologies in biomedical research will lead to significant practical 

dividends for diagnosis and therapy. 
 
Keywords: Information Theory, Bioinformatics, Biomedical Data 

Processing 
 

Introduction 

Biomedical data refer to complex processes with non-

linear, stochastic and non-analytic characteristics. These 

characteristics are determined by the very nature of the 

object under study: The complex human organism. 

Therefore, the processes under study cannot be adequately 

described by simple models. Yet, adequate modeling is 

crucial for the processing of biomedical data. 

Some of the major problems arising during the 

processing of biomedical data can be summarized as 

follows: 

 

• Evaluation of the influence (or correlation) of 

diagnostic parameters, biomarkers and risk factors 

on the actual emergence of disease-establishing 

causal relations (Lim et al., 2012) 

• Optimal discretization of diagnostic parameters-

finding physiologically meaningful thresholds 

(Nicolis and Prigogine, 1990) 

• Evaluation of a joint influence of a group of 

parameters, crucial for multi-parametric biological 

systems (Lim et al., 2012) 
• Partitioning of a group of parameters by the amount of 

information contained in these parameters and 
selection of a subgroup of parameters containing the 
greatest amount of information about all the parameters 

of the group under study, selecting the most 
meaningful and economical diagnostic parameters 
(Preckova et al., 2012; Molina-Pena and Alvarez, 2012) 

• Evaluation of informational variety (heterogeneity 
or dissimilarity) of a group of parameters, potential 

measure of system adaptation and homeostasis 

(Radtke et al., 2009; Lipsitz and Goldberger, 1992) 
 

 Here are some brief characteristics of the methods 

commonly used for the solution of the problems listed 

above, as well as some of the drawbacks of those methods: 
 
• For the problem of evaluation of influence 

(correlation), in most cases a correlation coefficient 
is used, i.e., the linearity of relations and gaussianity 
(normality) of distributions are assumed (Zar, 2010) 

• For the discretization of parameters and risk 
factors (continuous or ranked), formal methods 
are used irrespective of the processes under study 
(Glass and Stanley, 1970) 

• For the evaluation of joint influences of 
parameters, regression models are used, that is, 
linear forms with quantitative variables are 
postulated (Reynolds et al., 2003) 

• To determine the interconnection between variables 
(structural dependence) and to reveal common factors, 
using the analysis of principal components and factor 
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analysis, the continuity of parameters and the 
possibility of parameters’ presentation as linear forms 
are assumed (Afifi and Azen, 1979) 

• To evaluate the heterogeneity, variability or 

dispersion of parameters, gaussianity of distributions 

is assumed (Foulley and Quaas, 1995) 

 

 Thus, the methods commonly used for the solution of 

biomedical data processing problems a priori assume the 

fulfillment of one or several of the following hypotheses: 

 

• Continuity of parameters 

• Gaussian (normal) distributions of parameters 

• Linear relations between parameters and the 

possibility of presenting parameters in linear forms 

 

However, as a rule, in biomedical processes, discrete 

parameters are present side by side with continuous 

parameters; continuous parameters are not Gaussian; the 

interrelations between parameters are not linear and 

many parameters cannot be represented as linear forms. 

Therefore, the application of conventional methods for 

the solution of biomedical data processing problems 

often yields unsatisfactory results. 

 In the present paper, a unified approach, i.e., the 

information-theoretical analysis, is used for the solution 

of these problems. This approach makes it possible to 

examine models containing both continuous and discrete 

parameters, thus allowing for good inter-operability 

between diverse biomedical models. Moreover, it does 

not impose any constraints on the distribution of 

parameters, their interrelations and presentations. The 

suggested approach has been used for the solution of 

data processing problems in oncology (Blokh et al., 

2007; 2008; 2009; Blokh, 2013) and cardiology and 

biogerontology (Blokh and Stambler, 2014; 2015). The 

method developed in (Blokh et al., 2007) is presented in 

the monograph (Gutierrez Diez et al., 2012).  

It is important to note that, at present, the 

information-theoretical analysis is the only theoretically 

substantiated method for evaluating both the influence of 

a single risk factor and a joint influence of several risk 

factors on the occurrence of a disease, as compared to 

various statistical methods. It is also rigorously and 

formally defined, as compared to the various concepts of 

“machine learning”. To illustrate the solution of the 

relevant problems of biomedical data processing, a 

database on diabetes patients is used (see the Materials 

and Methods section). 

Materials and Methods 

Below we present the methodologies that are used to 

apply information-theory analysis for the solution of 

particular classes of biomedical data processing problems. 

Data Presentation  

The information-theoretical methods allow the 

researchers to work with any kind of parameters, both 

continuous and discrete. The parameters are presented in 

the form shown in Table 1. 

Sample 

In the illustrative present case, we used 8 parameters 

related to diabetes diagnosis. Though, any number of any 

clinically relevant parameters can be processed using the 

present methods. For the present diabetes assessment, 

the Pima Indians Diabetes Database of the Johns 

Hopkins University was analyzed (UCI, 2014). The 

representative sample comprised 130 diabetes patients 

and 262 healthy subjects. All the subjects were women at 

least 21 years old of Pima Indian origin, from Arizona, 

US. All the cases of diabetes that were included in the 

database were Type 2 diabetes (Baier and Hanson, 

2004). The data set included 8 parameters: P1-Number 

of times pregnant; P2-Plasma glucose concentration at 2 

hours in an oral glucose tolerance test; P3-Diastolic 

blood pressure (mm Hg); P4-Triceps skin fold thickness 

(mm); P5-2 h serum insulin (mu U/ml); P6-Body mass 

index (weight in kg/(height in m)^2); P7-Diabetes 

pedigree function; P8-Age (years). 

Classes of Data Processing Problems 

The following classes of biomedical data processing 

problems were considered: 

Estimation of the Influence of a Parameter on the 

Development of Disease, Establishing Causal 

Relations 

In the following, in order to measure the influence of 
one random value on another, we use the normalized 
mutual information (the uncertainty coefficient). Below 
is the definition of normalized mutual information (the 
uncertainty coefficient). 
 
Let X be a discrete random value with a distribution 

function  

X x1 x2 ....... xn 

Q q1 q2 ....... qn 

 
Entropy of random value X is: 

 

1

( ) log
i

i i

n

H X q q

=

= −∑  

 
For 2 discrete random values: X, Y, the uncertainty 

coefficient (the normalized mutual information) equals 
(Renyi, 1959; Zvarova and Studeny, 1997): 
 

( ; ) ( ) ( ) ( , )

( ) ( )

I X Y H X H Y H X Y
c
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where, H(X), H(Y), H(X,Y) represent entropies of random 

values X, Y and XY, respectively. 

The uncertainty coefficient has the following 

properties (Zvarova and Studeny, 1997; Cover and 

Thomas, 2006): 

 

• 0≤с≤1 

• с = 0 if and only if X and Y are mutually 

independent (no correlation between the parameters) 

• с = 1 if and only if there exists a functional relationship 

between X and Y (a complete correlation) 

 

In other words, the values of the normalized mutual 

information closer to unity indicate a better correlation 

between the parameters. Yet, unlike the correlation 

coefficient, the use of normalized mutual information 

implies no a priori linearity of relations and can be 

used for non-linear relations. Further, unlike the 

correlation coefficient, for the uncertainty coefficient 

c(X,Y) ≠ c(Y,X). That is to say, the influence of one 

parameter on the second is not equal to the reverse 

influence of that second parameter on the first one. 

That makes it easier to address the possible reversed 

causality problem that can emerge when using the 

correlation coefficient which makes no such 

distinctions. Furthermore, the uncertainty coefficient is 

a dimensionless measure, which allows comparing 

parameters from different systems and models. 

The Optimal Discretization of Parameters, Finding 

the Physiologically Relevant Thresholds 

The questions of discretization (or boundary setting) 

arise when, alongside discrete parameters, there are also 

considered continuous parameters, or when the 

discretization of a parameter does not match the 

parameter’s biological significance or the setting of the 

problem. An optimal discretization of parameter X 

relative to a discrete parameter Y is such a discretization 

in which the uncertainty coefficient c(X,Y) assumes the 

maximal values. Below we will show the optimal 

discretization of the parameters under consideration. 

Assessment of a Combined Influence of Parameters, 

Vital for Multi-Parametric Biological Systems 

Let there be parameters related to Disease Y, 

designated as Х1, Х2,..., Хm, having the categories α1, 

α2,…,αm respectively. Let us consider parameter Z 

=X1×X2×…×Xm, with α1*α2*…*αm categories. Then the 

combined influence of the parameters (biomarkers) Х1, 

Х2,..., Хm on the disease Y will be the influence of the 

parameter Z on the disease Y, that is, the value of the 

uncertainty coefficient c(Z,Y). We will term the 

parameter Z: “general/combined parameter” or 

“general/combined marker”. 

Let the combined marker Z be comprised of two 
discrete markers X1 and X2, while the marker X1 assumes 
two values: 0 and 1 and the marker X2 assumes three 
values: 0, 1 and 2. Then the correlation of the combined 

marker Z with the disease under consideration is 
estimated by the correlation of a “single marker” 
assuming 6 values in accordance to the values of the 
single markers X1 and X2: (0,0)-0, (0,1)-1, (0,2)-2, (1,0)-
3, (1,1)-4, (1,2)-5. We proceed in the same way for 
combined markers comprised by more than two markers. 

We should note a very important property of the 

combined influence of a group of parameters. Let, for 

example, Z = Х1, Х2,..., Хm, then r(Xi,Y)≤r(Z,Y) for all 

1≤i≤m. That is to say, the combined influence of a 

group of parameters is greater or equal than the influence 

of any parameters from this group (Gel’fand and 

Yaglom, 1957). This property emphasizes the 

adequacy of the metrics under consideration, insofar 

as the influence of several risk factors on the 

emergence of disease is always greater than the 

influence of some single factor among many. 

Selecting a Sub-Group of Parameters, Containing 

the Largest Amount of Information Regarding all 

the Parameters in the Group Under Consideration, 

Selecting the Most Meaningful and Economical 

Diagnostic Parameters 

First, we shall formulate the problem. Assume that 

the initial data on n objects are presented in the form of a 

n×m array [akj] (in the form of Table 1), where each row 

k is an object described by m discrete parameters. It is 

needed to find a parameter or a subgroup of parameters 

containing the greatest amount of information about all 

m parameters. 

The algorithm for selecting a subgroup of the most 

informative parameters from the entire group of 

parameters includes three procedures. A short 

description of each procedure is as follows. A more 

complete description of the application of information-

theory analysis for the selection problem is presented 

elsewhere (Blokh, 2012).  

1. Construction of the Uncertainty Coefficients 

Matrix: For i-th and j-th parameters 1≤i,j≤m, we 

calculate the uncertainty coefficient cij and construct 

m×m uncertainty coefficients matrix [cij].  

2. Construction of the Rank Matrix: For each column 

of the matrix [cij], we rank its elements and assign rank 1 

to the smallest element of the column. We obtain the 

matrix m×m of ranks [rij], where each column of the 

matrix contains ranks from 1 to m. 

We estimate the amount of information about all the 

m parameters contained in the i-th parameter by the sum 

of all the entries of the i-th row of the matrix [rij]. 



David Blokh and Ilia Stambler / American Journal of Bioinformatics 2014, 3 (1): 17-29 

DOI: 10.3844/ajbsp.2014.17.29 

 

20 

Table 1. The presentation form of the sample dataset 

 Parameter 1 (X1) Parameter 2 (X2) … Parameter m (Xm)         Disease (Y) 

Subject 1 x(1,1) x(1,2) ... x(1,m) y(1) 
Subject 2 x(2,1) x(2,2) ... x(2,m) y(2) 
... ... ...  ... ... 
Subject n x(n,1) x(n,2) ... x(n,m) y(n) 

 

3. Application of the Multiple Comparison Method: 

We apply the multiple comparison method to the sums 

of [rij] matrix rows (Glantz, 2001). This gives a 

clustering of parameters that includes the desired 

subgroup of parameters containing the largest amount of 

information about all the other parameters in the group. 

The most informative sub-group (the highest ranking 

cluster) can serve as a more economic diagnostic 

measure than the entire group, as it already contains the 

largest amount of information about all the other 

elements of the group. Moreover, this sub-group can 

serve to estimate causal connections and pathways 

among different elements of the entire group, as it shows 

the exact amount of information contained in the sub-

group of elements regarding other elements of this 

group. The weights of relations between the parameters 

in the group or network can thus be estimated. 

Estimation of the Information Variability 

(Heterogeneity) of a Group of Parameters, a 

Potential Measure of System Adaptation and 

Homeostasis 

Let M1,M2,…Mk 1≤k≤m be the clustering of the set of 

parameters M and | Mi | the number of parameters in the 

set Mi and |M|= m. We shall estimate the heterogeneity 

(information variability) of the set of parameters, using 

the normalized Shannon entropy (Alter et al., 2000): 

 

( ) ( )
1

1
| | / ln | | /

ln

k

i i

i

S M m M m
m

=

= − ∑  

 

Properties of the normalized Shannon entropy: 

 

• 0≤S≤1 

• S = 0 if and only if the only cluster is the initial set 

(there is no heterogeneity) 

• S = 1 if and only if every element of the initial set is 

a cluster (the maximal heterogeneity) 

 

Simply put, zero value of the normalized Shannon 

entropy would indicate a complete identity of all the 

parameters (complete homogeneity) with reference to 

information content variability. In contrast, the value of 

1 would indicate that any individual parameter has 

nothing in common with any other (complete 

heterogeneity), also with reference to information 

content variability. The greater variability may serve to 

indicate the adaptability of the system, its range of 

variation and ability to maintain function in response to a 

disturbance or insult. Notice that the use of normalized 

Shannon entropy, with values ranging from 0 to 1 

(unlike regular Shannon entropy which can be 

unlimited), has the advantage of non-dimensionality. 

Hence it can be used for comparing any model systems 

with any number and kind of parameters. The same 

advantage of non-dimensionality is provided by the use 

of normalized mutual information over regular mutual 

information. 

Results and Discussion 

Estimation of the Influence of a Parameter on the 

Development of Disease 

Table 2 shows the uncertainty coefficients for the 

influence of single parameters on the appearance of 

diabetes. Not surprisingly, the parameters P2 (Plasma 

Glucose) and P5 (Serum Insulin) exert the highest 

influence or correlation with diabetes (the values of the 

Uncertainty Coefficient of 0.17761 and 0.12918 

respectively). Indeed, these parameters are in fact 

definitive of diabetes. Age (P8) is the third best 

correlated parameter (C = 0.11212), showing the crucial 

role of the aging process for the emergence of Type 2 

Diabetes. Body Mass Index (P6), commonly understood 

to indicate the level of obesity, is also quite informative 

on the emergence of diabetes. On the other hand, the less 

specific parameters, not directly related to the disease 

mechanism, were shown to be less indicative, such as 

Triceps Skin Fold thickness (P4, C = 0.03736), Number 

of times pregnant (P1, C = 0.03601), Pedigree Function 

(P7, C = 0.02615) and Diastolic Blood Pressure (P3, C = 

0.01978). Thus the use of information theory allowed to 

obtain clinically meaningful analysis. 
 
Table 2. The influence of single parameters on the appearance 

of diabetes, as shown by the Normalized Mutual 
Information (the Uncertainty Coefficient-NMI/C) 

Parameter NMI (C) 

P2-Plasma Glucose 0.17761 
P5-Serum Insulin 0.12918 
P8-Age (years) 0.11212 
P6-Body Mass Index (BMI) 0.07120 
P4-Triceps Skin Fold thickness 0.03736 
P1-Number of Times Pregnant 0.03601 
P7-Diabetes Pedigree Function 0.02615 
P3-Diastolic Blood Pressure 0.01978 
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The Optimal Discretization of Parameters-Finding 

Physiologically Relevant Thresholds 

Figure 1 and 2 show the borders of discretization and 
the uncertainty coefficients corresponding to the 
discretization thresholds. The median values for healthy 
and diseased subjects are also shown for each parameter. 
The numbers of categories for each parameter, either two 
or three categories, were determined by the clinical 
significance of the parameters. That is to say, in some 
cases it makes sense to speak of parameters “above and 
below the norm”, where “the norm” is understood as 

some approximate dividing point, hence we consider two 
categories. In other cases it may be more appropriate to 
see the norm as an extended interval, while the values 
outside of that interval can be seen as abnormal, hence 3 
categories. Or else, there may be a middle interval where 
the distinction between diseased and healthy subjects is 
difficult, but becomes clearer outside that interval. Here 
“abnormality” is understood simply as enhanced 
correlation with the disease, while “normality” as higher 
correlation with health, as shown by the maximal values 
of the Uncertainty Coefficient. Figure 1 presents “point 
boundaries” while Fig. 2 presents “interval boundaries”. 

 

   
 
Fig. 1. “Point” boundaries (Diabetes). NMI-Normalized Mutual Information (Uncertainty Coefficient-C), %D-Proportion of Diseased, %H-

Proportion of Healthy, MD-Median Diseased, MH-Median Healthy. Parameters: (A) P4-Triceps Skin Fold Thickness-mm (TSFT); 
(B) P1-Number of Times Pregnant (TP); (C) P7-Diabetes Pedigree Function (PF); (D) P3-Diastolic blood pressure (mm Hg) 

 

  
 
Fig. 2. “Interval” boundaries (Diabetes). NMI-Normalized Mutual Information (Uncertainty Coefficient-C), %D-Proportion of Diseased, 

%H-Proportion of Healthy, MD-Median Diseased, MH-Median Healthy. Parameters: (A) P2-Plasma Glucose Concentration at 2 h in 
oral glucose tolerance test; (B) P5-2 h serum insulin (mu U/ml); (C) P8-Age (years); (D) P6-Body Mass Index (BMI) 
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Consider the use of optimal discretization to establish 

“Point boundaries” using the example of Triceps Skin 

Fold Thickness (Fig. 1A). The entire range of the 

parameter values is divided into several steps with 

putative boundaries at the points 27, 29, 31 and 33 mm. 

The continuous values below and above the boundary 

are assigned discrete values 0 and 1 respectively. Then 

the normalized mutual information (C) is calculated for 

those discrete values in the relation to the absence or 

presence of disease (0 or 1). Among all the boundaries, 

the highest C values are found for the boundary at 31 

mm (C = 0.037). Indeed, at this boundary, the 

distinction between the diseased and healthy subjects is 

most pronounced. Thus, of all the diseased subjects, 

41% are found below the boundary and 59% above it. 

Among all the healthy subjects, 64% are found below 

the boundary and 36% above it. For other boundaries, 

with less values of Normalized Mutual Information, the 

distinctions are less clear. 

Consider the use of optimal discretization to establish 

“Interval boundaries” using the example of Plasma 

Glucose Concentration at 2 h oral glucose tolerance test 

(Fig. 2A). The entire range of the parameter values is 

divided into different intervals, using a regular 

incremental step. Each time there are 3 intervals (lower, 

middle and upper) of different lengths and with different 

boundaries. We assign the discrete values 0, 1 and 2 to 

the lower, middle and upper interval, respectively. Then, 

for each set of intervals (boundaries) we calculate the 

normalized mutual information (C) in the relation to the 

absence or presence of disease (0 or 1). The highest 

normalized mutual information (C = 0.178) was when 

the lower interval was below 110, the middle interval 

was between and including 110 and 150 and the upper 

interval was above 150. With such interval boundaries, 

the distinction between the diseased and healthy 

subjects can be most reliably established. Thus, the 

greatest probability for health is below the glucose 

value of 110. Of all the healthy subjects, 54% are found 

in that interval and of all the diseased subjects only 

15% are in this interval. On the other hand, the 

probability for disease is the greatest in the upper 

interval above 150, including 45% of the diseased 

subjects and 9% of the healthy subjects. For the middle 

interval (110≤ plasma glucose ≤150), the distinction is 

more ambiguous as the interval includes 40% of the 

diseased subjects and 37% of the healthy subjects. For 

other boundaries, with less values of Normalized 

Mutual Information, the distinctions are less clear. The 

boundaries for other parameters for the present sample 

were optimized in the same way and the boundaries can 

be optimized in the same way for any other diagnostic 

parameter for any disease. 

Assessment of a Combined Influence of 

Parameters,Vital for Multi-Parametric Biological 

Systems 

Tables 3-6 show the estimates for the influence of 

combined parameters containing two or three 

parameters. The last column of every table contains the 

sum of coefficients of parameters, included in the 

combined parameter. We shall state that a combined 

parameter has a cumulative effect, if the uncertainty 

coefficient (normalized mutual information) of the 

combined parameter is more than the sum of coefficients 

of parameters included in that combined parameter (“the 

whole is greater than the sum of parts”). 

Specifically Table 3 shows the combined influence 

of age (parameter P8) with other parameters on the 

appearance of diabetes. The addition of age strongly 

increases the informative value of the parameters, 

illustrating the importance of aging for the emergence 

of age-related diseases and the importance of 

considering the patients’ age in diagnosis and 

treatment. Yet, also the combination of two other 

parameters increases the informative value as compared 

to individual parameters (Table 4) and in some cases, 

there is even a cumulative (synergistic or holistic) 

effect, when the combined influence of two parameters 

is greater than the sum of individual influences. For 

example, as Table 4 shows, there is a cumulative effect 

when combining the Number of Times Pregnant and 

Body Mass Index (BMI), or the Number of Times 

Pregnant with the Pedigree Function. This may indicate 

an important role the number of pregnancies may play 

in the rate of metabolic imbalance and aging. Also, 

cumulative effect is seen when combining the 

Pedigree Function with Diastolic Blood Pressure or 

the Pedigree Function with BMI. This may indicate 

the need to consider heredity not just as an 

independent risk factor but in combination with 

present environmental and life-style factors. In any 

case, the determination of cumulative effects is a 

unique capability of the information-theoretical 

approach and is impossible to achieve with the use of 

statistical methods. Yet, even without the emergence of 

cumulative effects, the combination of several 

diagnostic markers into a single, more informative 

marker, via the use of information theory, may provide 

valuable diagnostic and prognostic capabilities. 

When combining 3 parameters, the informative value 

is increased even more, compared to individual or double 

parameters. Thus the combined consideration of age, 

together with two other diagnostic parameters, increases 

the informative value (Table 5). For the combination of 

Age, Glucose and BMI, the Normalized Mutual 

Information is 0.326, almost twice as much as for 

glucose alone, 3 times more than for age alone and 
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almost 5 times more than for BMI alone. But also, as 

shown in Table 6, the combination of any other three 

parameters, increases the informative value, compared to 

individual or double parameters. Interestingly, here too 

the combination with the Number of Times Pregnant 

produces a cumulative effect. 
 
Table 3. Combined influence of age (P8) with other parameters on the appearance of diabetes, as shown by Normalized Mutual 

Information (NMI/C). * Cumulative effect (the combined influence is greater than the sum of individual influences) 

Parameters NMI (C) Sum 

P8, P2-Plasma Glucose 0.24836 0.28973 

P8, P5-Serum Insulin 0.21408 0.2413 

P8, P6-Body Mass Index (BMI) 0.1747 0.18332 

P8, P4-Triceps Skin Fold Thickness 0.1516* 0.14948* 

P8, P7-Pedigree Function 0.1321 0.13827 

P8, P1-No. of Times Pregnant 0.11766 0.14813 

P8, P3-Diastolic Blood Pressure 0.1139 0.1319 

 
Table 4. Combined influence of double diagnostic parameters on the appearance of diabetes, as shown by normalized mutual 

information (NMI/C). * Cumulative effect (the combined influence is greater than the sum of individual influences) 

Parameters NMI (C) Sum 

P2-Plasma Glucose, P6-Body Mass Index 0.2318 0.24881 
P2-Plasma Glucose, P5-Serum Insulin 0.21344 0.30679 
P2-Plasma Glucose, P4-Triceps Skin Fold Thickness 0.20571 0.21497 
P2-Plasma Glucose, P7-Pedigree Function 0.19793 0.20376 
P2-Plasma Glucose, P1-No. Times Pregnant 0.18986 0.21362 
P2-Plasma Glucose, P3-Diast. Blood Pressure 0.18062 0.19739 
P5-Serum Insulin, P6-Body Mass Index (BMI) 0.17524 0.20038 
P5-Serum Insulin, P1-No. Times Pregnant 0.15446 0.16519 
P1-No. Times Pregnant, P6-BMI 0.10995* 0.10721* 
P6-Body Mass Index, P7-Pedigree Function 0.09836* 0.09735* 
P3-Diast. Blood Pressure, P6-Body Mass Index 0.0863 0.09098 
P4-Triceps Skin Fold, P6-Body Mass Index 0.08249 0.10856 
P1-No. Times Pregnant, P7-Pedigree Function 0.06849* 0.06216* 
P3-Diast. Blood Pressure, P4-Triceps Skin Fold 0.05207 0.05714 
P1-No. Pregnancies, P3-Diast. Blood Pressure 0.0489 0.05579 
P3-Diast. Blool Pressure, P7-Pedigree Function 0.04686* 0.04593* 

 
Table 5. Combined influence of age (P8) with two other parameters on the appearance of diabetes, as shown by normalized mutual 

information (NMI/C). * Cumulative effect (the combined influence is greater than the sum of individual influences) 

Parameters NMI (C) Sum 

P8-Age, P2-Glucose, P6-BMI 0.32605 0.36093 
P8-Age, P2-Glucose, P5-Insulin 0.31013 0.41891 
P8-Age, P5-Insulin, P6-BMI 0.28608 0.31250 
P8-Age, P2-Glucose, P4-Triceps Fold 0.28463 0.32709 
P8-Age, P2-Glucose, P7-Pedigree 0.27352 0.31588 
P8-Age, P1-No. Pregnancies, P2-Glucose 0.27159 0.32574 
P8-Age, P2-Glucose, P3-Diast. Blood Pressure 0.26197 0.30951 
P8-Age, P4-Triceps Fold, P5-Insulin 0.24493 0.27866 
P8-Age, P5-Insulin, P7-Pedigree 0.23106 0.26745 
P8-Age, P1-No. Pregnancies, P5-Insulin 0.22399 0.27731 
P8-Age, P3-Diast. Blood Pressure, P5-Insulin 0.22362 0.26108 
P8-Age, P6-BMI, P7-Pedigree 0.20905 0.20947 
P8-Age, P1-No. Pregnancies, P6-BMI 0.19104 0.21933 
P8-Age, P4-Triceps Fold, P6-BMI 0.18805 0.22068 
P8-Age, P3-Diast. Blood Pressure, P6-BMI 0.17923 0.20310 
P8-Age, P4-Triceps Fold, P7-Pedigree 0.17401 0.17563 
P8-Age, P1-No. Pregnancies, P4-Triceps Fold 0.16071 0.18549 
P8-Age, P3-Diast. Blood Pressure, P4-Triceps 0.15329 0.16926 
P8-Age, P1-No. Pregnancies, P7-Pedigree 0.14443 0.17428 
P8-Age, P3-Diast. Blood Pressure, P7-Pedigree 0.13576 0.15805 
P8-Age, P1-No. Pregnancies, P3-Diast. Press. 0.12349 0.16791 
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Table 6. Combined influence of a selection of triple diagnostic parameters on the appearance of diabetes, as shown by Normalized 
Mutual Information (NMI/C). * Cumulative effect (the combined influence is greater than the sum of individual influences). 
Parameters: P1-Number of Times Pregnant, P2-Plasma Glucose, P3-Diastolic Blood Pressure, P4-Triceps Skin Fold 
thickness, P5-Serum Insulin, P6-Body Mass Index (BMI), P7-Diabetes Pedigree Function, P8-Age (years) 

Parameters NMI (C) Sum 

P3,P4,P5 0.16457 0.18632 

P1,P4,P8 0.16071 0.18549 

P1,P6,P7 0.15524* 0.13336* 

P3,P4,P8 0.15329 0.16926 

P1,P7,P8 0.14443 0.17428 

P3,P7,P8 0.13576 0.15805 

P1,P4,P6 0.12876 0.14457 

P1,P3,P6 0.12741* 0.12699* 

P1,P3,P8 0.12349 0.16791 

P3,P6,P7 0.11453 0.11713 

P4,P6,P7 0.11239 0.13471 

P1,P4,P7 0.11137* 0.09952* 

 

It is important to note that the present combined 

triple diagnostic markers could be reliably produced 

based on the current sample of several hundred 

subjects (130 diabetes patients and 262 healthy 

subjects). To produce combined diagnostic parameters 

composed of four individual parameters and more, 

there would be a need for much larger samples. Yet, 

for diagnostic purposes, any number of parameters, 

from even a limited sample, can be brought together 

into a diagnostic rule or diagnostic model (for 

example using a “decision tree” or “weighted Hamming 

Distance”). Such a rule would be based on all the 

individual values of Normalized Mutual Information of 

all the parameters involved in relation to the disease 

and can produce good diagnostic results. This 

capability was previously exemplified for the detection 

of breast cancer, building information-theoretical 

diagnostic models, combining a large set of parameters 

via the use of “decision trees” or “Weighted Hamming 

Distances” (Blokh et al., 2007; 2008). 

Selecting a Sub-Group of Parameters, Containing 

the Largest Amount of Information Regarding all 

the Parameters in the Group Under Consideration-

or Selecting “the Most Informative Parameters” 

We calculate the uncertainty coefficients cij 1≤i,j≤8 

for the parameters of the Database and construct the [cij] 

matrix of uncertainty coefficients (Table 7). 

We rank the [cij] matrix (Table 7) columns and obtain 

the rank matrix [rij] (Table 8). Here, the smallest 

uncertainty coefficient obtains the rank 1 and the largest 

has the rank 8. 

We consider Table 8 as a Friedman statistical model 

(Conover, 1999) and examine the row effect of this table. 

Hypotheses: H0: There is no row effect (“null 

hypothesis”); H1: The null hypothesis is invalid 

Critical Range: The sample is “large”; therefore, the 

critical range is the upper 5%-range of 2

7
χ  distribution. 

Calculation of the χ
2
-criterion (Glantz, 2001) gives 

χ
2
 = 15. 

The critical range is 2

7
χ >14.07. Since 15>14.07, the 

null hypothesis with respect to Table 8 is rejected. Thus, 

according to the Friedman test, the row effect exists. 

Hence, there is a difference between the rows under 

consideration. 

For multiple comparisons, we use the Newman-Keuls 

test (Glantz, 2001). We obtain |Rj-Rj+1|>5.544, where Rj 

and Rj+1 are the j-th and (j+1)-th elements of the “Sum 

of ranks” column of Table 8. Using the multiple 

comparisons method, we construct the parameter 

clustering shown in Table 9. 

The obtained clustering has the following properties: 

For two neighboring clusters of Table 9, the smallest 

element of one cluster and the greatest element of 

another cluster located nearby are significantly different 

(αT = 0.05 where αT is the probability at least once to 

erroneously identify differences);  

Elements belonging to the same cluster do not differ 

from each other (αT = 0.05). 

The parameters of Cluster 1 contain the most 

information regarding all the 8 parameters (in the 

descending order of information content within the 

cluster). The parameters are: P2-Plasma glucose 

concentration at 2 h in an oral glucose tolerance test; 

P8-Age (years); P5-2 h serum insulin; P6-Body mass 

index. These results appear to fit medical intuition, as 

abnormal insulin and glucose concentration are the 

parameters definitive of diabetes; the body mass index 

appears as a major parameter affecting the body 

metabolism, while age (or aging) is a crucial 

contributor for the development of age-related 

diseases, including diabetes. 
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Table 7. The matrix [cij] of uncertainty coefficients for the database parameters 

Parameter P1 P2 P3 P4 P5 P6 P7 P8 

P1 1.00000 0.02893 0.03360 0.00432 0.00797 0.00962 0.00002 0.20734 
P2 0.04450 1.00000 0.05209 0.02757 0.17954 0.04579 0.01030 0.06914 
P3 0.03335 0.03362 1.00000 0.02181 0.00460 0.02323 0.00005 0.07774 
P4 0.00430 0.01783 0.02185 1.00000 0.02183 0.11504 0.00153 0.02098 
P5 0.01202 0.17602 0.00698 0.03311 1.00000 0.04534 0.01814 0.04335 
P6 0.01207 0.03736 0.02936 0.14514 0.03773 1.00000 0.00360 0.02441 
P7 0.00002 0.00658 0.00005 0.00151 0.01182 0.00282 1.00000 0.00650 
P8 0.20539 0.04452 0.07758 0.02090 0.02847 0.01927 0.00656 1.00000 

 
Table 8. The rank matrix [rij] of the parameters uncertainty coefficients. The smallest uncertainty coefficient (normalized mutual 

information) has the rank 1 and the largest has the rank 8 

Parameter P1 P2 P3 P4 P5 P6 P7 P8 Sum of ranks 

P1 8 3 5 2 2 2 1 7 30 
P2 6 8 6 5 7 6 6 5 49 
P3 5 4 8 4 1 4 2 6 34 
P4 2 2 3 8 4 7 3 2 31 
P5 3 7 2 6 8 5 7 4 42 
P6 4 5 4 7 6 8 4 3 41 
P7 1 1 1 1 3 1 8 1 17 
P8 7 6 7 3 5 3 5 8 44 

 
Table 9. Clustering of 8 parameters according to sums of uncertainty coefficients ranks. The highest ranking parameters clusters 

contain the largest amount of information 

Clusters Parameter name Sum of ranks 

Cluster 1 P2-Plasma Glucose 49 
 P8-Age (years) 44 
 P5-Serum Insulin 42 
 P6-Body Mass Index  41 
Cluster 2 P3-Diast. Blood Pressure 34 
 P4-Triceps Fold Thickness 31 
 P1-No. Times Pregnant 30 
Cluster 3 P7-Diabetes Pedigree 17 

 

Less information is contained in the parameters of 

Cluster 2 and 3 (in the descending order of 

information content). Those parameters are: P3-

Diastolic blood pressure; P4-Triceps skin fold 

thickness; P1-Number of times pregnant; P7-Diabetes 

pedigree function. The less informative values of 

those parameters also appear as plausible, as they are 

less strongly related to the recognized specific clinical 

symptoms and mechanisms of diabetes. 

We shall add to the 8 parameters the 9th parameter: 

the presence or absence of the disease and conduct the 

following procedures: 

Calculate the uncertainty coefficients cij 1≤i,j≤9 for 

the parameters of the Database and construct the [cij] 

matrix of uncertainty coefficients (Table 10). 

Rank the [cij] matrix (Table 10) columns and obtain 

the rank matrix [rij] (Table 11). 

Consider Table 11 as the Friedman statistical model 

(Conover, 1999) and examine the row effect of this table. 

Hypotheses: H0: There is no row effect (“null 

hypothesis”); H1: The null hypothesis is invalid 

Critical range: The sample is “large”; therefore, the 

critical range is the upper 5%-range of 2

8
χ  distribution. 

Calculation of the χ
2
-criterion (Glantz, 2001) gives χ

2 

= 20.97. 

The critical range is 2

8
χ >15.51. Since 20.97>15.51, 

the null hypothesis with respect to Table 11 is rejected. 

Thus, according to the Friedman test, the row effect 

exists. Hence, there is a difference between the rows 

under consideration. 

For multiple comparisons, we use the Newman-Keuls 

test (Glantz, 2001). We obtain |Rj-Rj+1|>5.88, where Rj 

and Rj+1 are the j-th and (j+1)-th elements of the “Sum 

of ranks” column of Table 11. Using the multiple 

comparisons method, we construct the parameter 

clustering shown in Table 12. 

The obtained clustering has the following properties:  

For two neighboring clusters of Table 12, the 

smallest element of one cluster and the greatest element 

of another cluster located nearby are significantly 

different (αT = 0.05). 

Elements belonging to the same cluster do not differ 

from each other (αT = 0.05). 
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Table 10. The matrix [cij] of uncertainty coefficients for the database parameters, including the presence of the disease itself as a 
parameter (diabetes-P9) 

Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9 

P1 1.00000 0.02893 0.03360 0.00432 0.00797 0.00962 0.00002 0.20734 0.03601 

P2 0.04450 1.00000 0.05209 0.02757 0.17954 0.04579 0.01030 0.06914 0.17761 

P3 0.03335 0.03362 1.00000 0.02181 0.00460 0.02323 0.00005 0.07774 0.01978 

P4 0.00430 0.01783 0.02185 1.00000 0.02183 0.11504 0.00153 0.02098 0.03736 

P5 0.01202 0.17602 0.00698 0.03311 1.00000 0.04534 0.01814 0.04335 0.12918 

P6 0.01207 0.03736 0.02936 0.14514 0.03773 1.00000 0.00360 0.02441 0.07120 

P7 0.00002 0.00658 0.00005 0.00151 0.01182 0.00282 1.00000 0.00650 0.02615 

P8 0.20539 0.04452 0.07758 0.02090 0.02847 0.01927 0.00656 1.00000 0.11212 

P9 0.03319 0.10641 0.01837 0.03462 0.07894 0.05229 0.02453 0.10431 1.00000 

 
Table 11. The rank matrix [rij] of the parameters uncertainty coefficients, including the presence of the disease as a parameter: P9. 

The smallest uncertainty coefficient (normalized mutual information) has the rank 1 and the largest has the rank 9 

Parameter P1 P2 P3 P4 P5 P6 P7 P8 P9 Sum of ranks 

P1 9 3 6 2 2 2 1 8 3 36 

P2 7 9 7 5 8 6 6 5 8 61 

P3 6 4 9 4 1 4 2 6 1 37 

P4 2 2 4 9 4 8 3 2 4 38 

P5 3 8 2 6 9 5 7 4 7 51 

P6 4 5 5 8 6 9 4 3 5 49 

P7 1 1 1 1 3 1 9 1 2 20 

P8 8 6 8 3 5 3 5 9 6 53 

P9 5 7 3 7 7 7 8 7 9 60 

 
Table 12. Clustering of 9 parameters according to sums of uncertainty coefficients ranks. The highest ranking parameters clusters 

contain the largest amount of information 

Clusters Parameter name Sum of ranks 

Cluster 1 P2-Plasma Glucose 61 

 P9-Diabetes 60 

Cluster 2 P8-Age (years) 53 

 P5-Serum Insulin 51 

 P6-Body Mass Index 49 

Cluster 3 P4-Triceps Fold Thickness 38 

 P3-Diast. Blood Presssure 37 

 P1-No. Times Pregnant 36 

Cluster 4 P7-Diabetes Pedigree  20 

 

The parameters included in the highest ranking 

cluster in Table 12 (Cluster 1) contain the most 

information about the other parameters. Thus we find 

that the parameters P2 (glucose concentration) and P9 

(presence and absence of the disease) contain the 

largest amount of information regarding all the other 

parameters in this selection. This is quite reasonable, 

as the parameter P9 is the very presence of diabetes, 

which includes all the parameters serving for its 

diagnosis. On the other hand, the glucose level is the 

most significant parameter in type 2 diabetes, which is 

clinically defined as impaired glucose utilization. 

Thus, using the information theoretical measures, we 

were able to rigorously and formally validate the 

significance of these parameters. 

The ability to select the most informative 

parameters, either just by the value of normalized 

mutual information for individual parameters or their 

combinations (Examples 1 and 3 of this study), or by 

determining the amount of information each 

individual parameter or combination contains about 

all the other parameters in the group (the example of 

the current section), can have significant diagnostic 

utility. This ability would economize the diagnostic 

tasks, allowing the diagnostician to indicate the most 

meaningful parameters and perhaps discard the 

parameters whose information is already contained in 

the more informative ones. This capability could be 

especially useful in “OMICS” studies (genomics, 

metabolomics, proteomics, etc.) which may contain 
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vast numbers of parameters, for a great part of which 

the diagnostic significance is uncertain. Determining 

the most informative parameters within those vast 

arrays may make those data more manageable and 

clinically applicable. Using this method, it may also 

be possible to enrich and elaborate biological 

mechanisms, pathways and networks, as it would 

allow the researchers to determine the amount of 

information one element in a pathway or network has 

about all the others and in this way determine the 

weights of mutual influences. 

Estimation of the Information Variability 

(Heterogeneity) of a Group of Parameters-a 

Potential Measure of System Adaptation and 

Homeostasis 

We shall estimate the heterogeneity (information 

variability of the parameters) for the clustering’s shown 

in Table 9 and 12, using normalized Shannon entropy. 

For Table 9, the normalized Shannon entropy S = 

0.468546 and for Table 12, S = 0.596563. That is to 

say, with the addition of the parameter “Diabetes” (P9) 

to the 8 diagnostic parameters, the heterogeneity of the 

obtained set of parameters increased. This may be due 

to several reasons. First of all, the parameter P2 

(glucose concentration) contains the largest amount of 

information about the parameter P9 (diabetes). Hence, 

with the addition of the parameter “Diabetes” into the 

group, the parameter “Glucose” increased its 

information content about all the parameters to the 

largest extent, compared to the rest of the parameters 

and secondly, the parameter “Diabetes” itself contains a 

large amount of information about the other 8 

parameters. As a result, the parameters “Glucose 

Concentration” (P2) and “Diabetes (P9) formed a new 

cluster, whose parameters contain the largest amount of 

information about the other parameters. 

 Yet another application of information theory to 

establish the heterogeneity (variability) of parameters 

related to diabetes was presented earlier, using the 

same database (Blokh and Stambler, 2014). Briefly, 

we used normalized Shannon entropy as the measure 

of heterogeneity or variability. The model employed 4 

parameters: P2-plasma glucose concentration, P5-2 h 

serum insulin, P3-diastolic blood pressure and P6-

body mass index. We determined the heterogeneity 

(the normalized Shannon entropy) for the entire set of 

those parameters for healthy individuals and diabetes 

patients of four age groups: 21-25, 26-29, 30-39 and 

40-49 years old. The results are summarized in Table 

13. Crucially, only young and healthy individuals 

exhibited high levels of entropy, indicating a high 

level of heterogeneity and variability, which can be 

interpreted as enhanced adaptability and homeostatic 

capacity. For older individuals (both healthy and 

diseased), same as for younger diseased individuals, 

the entropy values were diminished, indicating a 

greater homogeneity and a narrow range of change, 

which can be interpreted as a lessened ability for 

adaptation and homeostatic capacity. The common 

entropy change pattern also suggested a formal analogy 

between aging and aging-related disease, with reference 

to those particular parameters in the present sample. 

Moreover, the loss of complexity, variability or 

heterogeneity, shown by the lower system entropy, 

has been suggested as a potentially powerful dynamic 

biomarker of disease and aging and as a potential 

metrics to test therapeutic interventions by measuring 

the therapy’s ability to restore the entropy levels 

(Lipsitz and Goldberger, 1992; Li et al., 2014). The 

latter studies focused on heart rate variability as a 

convenient surrogate measure of the system adaptive 

homeostasis. In the current example, we focused on 

several parameters connected with diabetes diagnosis. 

Yet, in fact, with the use of information theory, 

measuring a wide range of parameters, cross-

sectionally and longitudinally, individually and in 

combinations, it may be possible to establish a truly 

comprehensive measure of youthful, healthy 

homeostasis and an evidence-based quantitative 

framework to assess therapeutic and anti-aging 

interventions by their effects on the homeostasis. 
 
Table 13. Entropy (heterogeneity or variability) as a measure of age-related change and disease 

Subjects (women, number) Disease status Age Entropy 

53 Healthy 21-25 0.527 

22 Healthy 26-29 0.592 

41 Healthy 30-39 0.583 

18 Patients 40-49 0.000 

24 Patients 21-25 0.000 

18 Patients 26-29 0.000 

34 Patients 30-39 0.000 

26 Patients 40-49 0.000 
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Conclusion 

The importance of using information theory in 

biomedical research has been recognized earlier and 

sometimes emphatically stressed. Thus, according to 

Paninski, “The mathematical theory of information 

transmission represents a pinnacle of statistical research: 

The ideas are at once beautiful and applicable to a 

remarkably wide variety of questions” (Paninski, 2003) 

and according to one of the pioneers of the use of 

information theory in biomedicine, Quastler (1958), 

“The basic concepts of information theory-measures of 

information, of noise, of constraint, of redundancy-

establish the possibility of associating precise (although 

relative) measures with things like form, specificity, 

lawfulness, structure, degree of organization. … Closely 

related is the problem of destruction of orderliness. In 

biology, this is the problem of aging and decay” 

(Quastler, 1958). Nonetheless, the information-

theoretical measures have not yet entered into routine 

use of biomedical researchers and practitioners. 

Here we illustrate several applications of 

information theory for the solution of biomedical data 

processing problems that are commonly encountered in 

biomedical research and practice and for which 

information theory offers an adequate and often the 

only possible and grounded methodology. Those 

problems include: Evaluation of the influence (or 

correlation) of diagnostic parameters, biomarkers and 

risk factors, on the actual emergence of disease in order 

to assess causal relations; optimal discretization of 

diagnostic parameters in order to find physiologically 

meaningful thresholds and boundaries; evaluation of a 

joint influence of a group of parameters, necessary in 

order to describe complex multi-parametric biological 

systems; partitioning parameters by their information 

content and selecting subgroups of parameters 

containing the greatest amount of information about all 

the parameters of the group, which may be used to 

select the most meaningful and economical diagnostic 

parameters, as well as evaluate pathways and networks 

in biological systems; and finally evaluating 

information variety (heterogeneity) of a group of 

parameters, which may serve as a potential surrogate 

measure of system adaptation and homeostasis. There 

are grounds to hope that increased use of information-

theoretical methods for the solution of such and similar 

problems will yield more enhanced and adequate 

diagnostic capabilities as well as more reliable, 

quantitative evidence-based treatments. 
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