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Abstract: Problem statement: The parallelization of multiple progressive aligemh algorithms is a
difficult task. All known methods have strong bettecks resulting from synchronization delays. This
is even more constraining in distributed memorytays, where message passing also delays the
interprocess communication. Despite these drawbgzksllel computing is becoming increasingly
necessary to perform multiple sequence alignmfgmproach: In this study, it is introduced a solution
for parallelizing multiple progressive alignmentsdistributed memory systems that overcomes such
delays. Results: The proposed approach uses threads to separatel aalignment from
synchronization and communication. It also usedffardnt approach to schedule independent tasks.
Conclusion/Recommendations:The approach was intensively tested, producing dogeance
remarkably better than a largely used algorithnis Buggested that it can be applied to improve the
performance of some multiple alignment tools, a&JSTALW and MUSCLE.
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INTRODUCTION development of faster alignment tools using high
performance computing. Several such tools have been
An important field of bioinformatics is the anakys developed to support the genetic researches. Haweve
of amino acid sequences, which is the major form tdhe parallelism provided by them either are retgddo
produce data about evolutionary processes. Geststici expensive shared-memory multiprocessors or does not
use protein alignments to gather information aboutonsider fundamental aspects of parallel computing.
genetic relationships among species or individualse A common problem found in such tools is that they
method that is extensively applied is the proguessi simply replicate processes to reach parallelismis Th
alignment of multiple sequences. Several multipleworks well for certain applications, but fails niably
sequence alignment algorithms have been proposed bi@r multiple alignment in distributed memory system
they present, usually, a high computational corifylex Since progressive multiple alignments demand fratjue
(Rashidet al., 2009). Among these algorithms a major CoMmunication and synchronization, the use of smpl
category includes the progressive approach. Althdbg replication creates a huge latency. This latenckasa

- : . any hosts to remain idle waiting for data, what is
soll_Jtlons.achleved by a progressive approach ate né}vqorsened by poor task scheduling mechanisms. An
optimal, its computational cost is lower than thestc

¢ hod deed hod often used algorithm, presented by (Letoal., 2005)
rom exact methods. Indeed, exact methods aré NnQlfters from this problem. In that algorithm, a homy

viable when the number of sequences to be alignegmain idle when its input data, stored in anothest,
reaches the hundreds. _ cannot be sent immediately.

Approximate methods, such as the progressive |n this study a new parallel algorithm, aimed for
ones, are crucial since the amount of amino acidistributed memory systems, is presented. This new
sequences available for comparison becomes larger aalgorithm circumvents the problems created by
larger. Globally available sequence databases dtbow synchronization, communication and poor scheduling
accurate  multiple  alignments, requiring  the through the use of multihtreaded programming.
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Separated threads are created to deal with alighmeStrumpen, 1995), simulated annealing (Ishikaatval.,
processing and with data communication. The task993; Zolaet al., 2006), or Markov chain decomposition
scheduling is performed by a priority algorithmé@den  (Bhandarkaet al., 1998; Keibleket al., 2007).
data location. This approach was tested and itgtses (Strumpen, 1995) presented a geographically
show a noticeable improvement when compared witldistributed parallel computing approach over the
Luo’s algorithm, as will be seen in results. internet (MIMD) which improves the biological

During the remaining sections the reader finds asequence analysis. He showed that sequence analysis
description of related works, followed by a detdile might be done over several countries with low
discussion of the proposed algorithm and the obthin requirements on communication bandwidth, achieving
results. The discussion is concerned with thebetter results than those executing in a sequenéiehine.
experimental evaluation of this algorithm. Finally, (Du et al., 2005) used MIMD architecture to perform the
some conclusions and prospective directions areeconstruction of large phylogenetic trees, diddite
presented in the last section. datasets into smaller subproblems and distributhmey

computation load over multiple processors so tlaghe
Current research in multiple sequence alignment processor constructs subtrees on each subprobkbm wi
algorithms: The progressive alignment consists in thebatch in parallel. It finally collects the resutfitrees and
alignment of pairs of sequences or pairs of alignisie  merges them into a supertree.
in a progressive way, through a previously conseuic (Ebedes and Datta, 2004) showed a variation of
phylogenetic tree, which is a binary tree whereheac c|ystalw distributed memory implementation. It is
leaf node is a single genomic sequence, whileshowed that this approach results in a significant
intermediary and root nodes represent ge”et'%peedup. The experimental results obtained by
relationships between families of sequences. Thegpages showed a speedup of over 5.5 on six
parallelization of.allignment algorithms may bg madeprocessors for most inputs.
through two distinct approaches, with different (Zola et al., 2006) proposed a method that

girr?nlgla”?/c;btlg%ﬂrsgngnetﬁgnsd'ggs ?nacgiie Im% iSsimultaneously performs multiple sequence alignment
q ge p L .~and phylogenetic tree inference for large inpubcts.
ecomposed and distributed among parallel proogssgt is described a parallel implementation of thethoe

elements; the second one parallelizes the treesnod h o imulated i heuristidiol
managing each node as an atomic block. that utilizes simulated annealing metaheuristidi

The major concern with such approaches is théoca!ly optimal phylogenetlc_trees in reasonahiesti In
allocation of new tasks to idle hosts. This allemat @ different approach (Ishikawat al., 1993) used
must consider the dependence from primitive tasks, simulated annealing heunstl.cs in a parallel system
well as the load balance and the communicatiorfolve the problem of multiple sequence alignment.
overheads. This is a hard problem and has strongasically, they solve the problem of multiple seoue
influence in the implementation performance. alignments calculating the annealing temperature in

Both approaches present advantages angarallel, in order to improve the simulated anmesli
drawbacks. For instance, strategies acting in thden algorithm result at a reasonable execution time.
level will produce a finer granularity, increasing Another  application  of  parallelism in
communication but reducing the latency from databioinformatics can be seen in (Bhandaréizal., 1998),
dependence, since a single tree node is dependbnt owhere it is presented practical experience with the
from its children. Some strategies following this design and implementation of a suite of parallel
scheme were proposed in the literature, includingalgorithms for chromosome reconstruction via onlgri
(Lopes and Moritz, 2005; Luet al., 2005). They were of DNA sequences. It uses parallel simulated ammgal
incorporated in alignment software tools, such aslgorithms for physical mapping of the sequences an
ClustalW-MPI (Li, 2003) and Muscle-SMP (Derdy they are based on Markov chain decomposition. A
al., 2006). These strategies usually keep a singldifferent application of Markov chains was suggéste
process in each processor, which is responsiblbdtdr by (Keibleret al., 2007), who presented two approaches
processing and data communication. This approacto decode human chromosomes without turning the
creates significant communication latency, since anemory usage and running time prohibitive. They
process cannot communicate and work at the sam@eveloped the Treeterbi and Parallel Treeterbi aush
time. Although priority lists can be used to minbmi and implemented them in the TWINSCAN/ NSCAN
the latency (Luoet al., 2005), there is not a known gene-prediction system. Both methods use genedalize
approach which completely eliminates it. Hidden Markov Models (HMM).

Other examples for alignment approaches incluee th More different approaches includes the inversion
use of distributed architectures (Ebedes and D2f34; of the conventional order for progressive alignmeust
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proposed by (Kleinjunget al.,, 2002), use of tree. The size of each transfer is proportiondahéosize
decentralized cache (Trystram and Zola, 2005)gmot of the input sequences in the sending node, baiggpt

foldings (Palwet al., 2007; Arcuriet al. 2010). in the upper portion of the tree. Since the schiadul
policy proposed here avoids these transfers, it is
MATERIALS AND METHODS conceivable that for each node that is not a leakrin

the tree at least half of the transfers can be dmebi

The multithreaded approach: In distributed memory This is true in the upper portion of the tree, vehtre
systems each host usually process one task atWitmée  algorithm may use fewer nodes to finish the aligntne
this avoids overcharging the host's memory and  Secondgsycnis the sum of the delay times to start
processor, it opens the door for poor cpu utilmati a transfer that appears because the sending hiossys
depending on the application. As briefly discusdedng  doing some computation. With the multithreaded
the introduction, the progressive multiple aligntnen approach this time can be neglected since the
technique demands frequent synchronization and datomputing thread does not preclude the communitatio
exchange. These demands turn this technique sorhewttaread to begin the transmission.
inefficient when running on distributed systems. It is impossible to have an exact measure of the

The inefficiency created when performing the number of data transfers and the time spent on.them
alignment in parallel comes basically from two However, itis conceivable that the reductionsoiditrced
conditions: Need for data synchronization and gask by the scheduling policy and the multithreading are
scheduling. The data synchronization is charadteris important. This is even more admissible for aligntae
from the progressive alignment, where alignmentsnvolving larger number of sequences.
produced by one node are input data for its parede
in the phylogenetic tree. This problem cannot beThreads description: The core of this new algorithm is
eliminated but can be minimized through improvedcomposed by two threads. One is in charge of actual
communication and task allocation. The poorprocessing, executing the alignment procedures itsrer
scheduling is originated by the use of simple bfg-o input data. The other is in charge of data exchange
tasks scheduling, which implies in severe idle 8me freeing the alignment thread from dealing with
waiting for remote data. This problem is also ovene interprocess communication and synchronization.
by an improved allocation mechanism. The basic structure for this approach is shown in

The multithreaded algorithm proposed here reduceBig. 1. From that it is possible to see that thsead
the time needed for task synchronization through thrunning in one host communicate to each other titiou
separation between alignment processes and dathe local memory. Remote hosts communicate through
exchange processes. It also improves the schedulirthe communication threads residing on each host.
through a task allocation policy that priorizes the The use of separate threads for data munching and
allocation accordingly the data location. Combiningdata exchange allows every host to keep processing
both modifications it is possible to improve thegkel given task while another task is waiting for data.
progressive alignment by a large factor. TheseSimilarly, a host that receives a request for dali@ady

modifications are detailed in the next section. available in the host memory) might send it back
An empirical evaluation of these improvements canimmediately, even if it is processing a runnincgtas
be made considering that the total time for alignime As a consequence of the data exchange

composed by three components: the time to aligrs pai optimization, whenever a processor becomes idlg, an
of sequencestf), the time to transfer a pair of active task may be scheduled, independently froen th
sequences to another hostsr) and the time that host |ocality of its input data. If the task requirestalzhat is
must wait for the sending hosts to become availble not |ocally stored, a message is sent by this tagke
transmit €sync). This is represented in the following Eq. 1. post keeping the data, through the involved

communication threads, ordering the immediate data
transfer to the requiring task.

Although the improvements made by the

It is known thatt,ge, cannot be affected by the separation of threads are significant, the algamith
scheduling policy. Therefore, the multithreadedbatgm  can be further improved through the use of a
has its performance related to the other two parcel scheduling policy more efficient than the

First, transter IS the sum of each individual data conventional bag-of-tasks. The goal here is to cedu
transfer between hosts. The number of transferatis, the amount of data exchanges that are needed in
most, equal to the number of edges in the phyldiEene order to process the whole alignment.
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Fig. 4: Flowchart of the communication thread alldpon in the slave processes of the strategy basedhe
multithreaded approach

With the conventional bag-of-tasks policy, if a giv In order to minimize the number of data
processor becomes idle, any node (in the phylogenetexchanges in a given scheduling instant, threeriprio
tree) that is already ready to processing is altwtao  scheduling levels are defined. These schedulingl$ev
it. This allocation may result in zero, one or tdata of a given task depend upon the locality of theadat
exchanges, depending on the place where the childreneeded for its execution. Each ready task has its
of this node were executed. priority defined as follows:
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« High, when the data produced by its children aredata is not available it will wait for the commuaiion
located in the same idle host thread to provide the data, performing the aligninan
+ Mean, when either only one child is in the samesoon as all data become available.
host or both children are located in different Bpst The communication thread acts in two different
but at least one of them is located in an idle host ways. If it receives a request message it sendsidte
« Low, when both children are located in busy hosts from its local memory to the host that is demanding
If it receives migrated data it stores it in thecdb
The pairing task-host is performed after priority memory, signaling the alignment thread that the dst
classification, allocating the pairs with the highe already available.
priority. This procedure stops either when all kost

become busy or the tasks queue becomes empty. After RESULTS
each allocation the priorities are redefined, sitive ) )
allocated host would be the best host for a differe The evaluation of the multithreaded approach was

task. In such case, that task must receive a nionitgr ~ Performed through experimental benchmarking. The
alignment was conducted over sequences extracted
Algorithm implementation: An implementation of the from the NCBI (The database is found at
multithreaded algorithm was made using the Musclevww.ncbi.nim.nih.gov) (Sherryet al., 2001). During
alignment tool as its basic platform. Several clesng the benchmarks the variable parameters in the
were performed in order to verify several distinctsequences were the total number of aligned seqsence
possibilities of parallelization. The parallelisraedl the and the number of residues in each sequence @hat i
bag-of-tasks model, where a master process isdrgeh the sequence length).
of distributing tasks and controlling communication The tests were executed in a Beowulf cluster
The actual processing tasks are named as slavieg, be composed by 16 nodes, each with an tnRéntium 4
composed by the alignment and communicationcpy of 2.80GHz and 1 Ghyte of memory. The machines
threads. The flowcharts presented in Fig. 2-4 =& \yere connected through a dedicated switch of V&hbit
this |mplementat|on. In order to evaluate the algorithm the tests fedus
Figure 2 depicts _the fI_owchart of the master;, g speedup, scalability and dependence on the
process, where the major points are the task ditoca . .
phylogenetic tree. The results were compared agains

procedure (lower left) and the task 's alaorith : s th I hat éais th
preparation/execution procedure (upper right)idhy, ~ L-UO'S algorithm, since it is the only one that élis the

it allocates the tasks to the slaves until all sodee  dynamic approach for tasks assignment throughegisist
busy. After that, the master waits for each hostignal ~ hodes. The first part of this section presentsréselts
that they are ready to execute and then startsemtec  for Luo’s algorithm implemented in the Muscle tool,
threads to execute tasks on the slave nodes asasomn followed by speedup and scalability tests of the
node becomes idle. When a node becomes idle theultihntreaded proposal. The section ends with the
master process schedules the task with the highegivestigation about the influence of phylogenetieet
priority to it. If all required data is located that host,  strycture over execution time.

the master process sends a message to the slave to

execute the task, otherwise the master sends aageess

to the involved hosts to move the dependent dath an ove a broader view of Luoed in the original st
then the task execution is performed. After thigosthe . . 9 atlye .
o two major reasons. First they are implemented in

master waits the acknowledgment of each task; ’
completion, repeating the procedure until e‘Verde‘ferent alignment tools (Clustalw and Muscle;asd

alignment is performed. they were run over different data sets, with défer

Figure 3 and 4 show the flowcharts correspondingnumber of residues and sequences (since the drigiha
respectively, to the alignment thread (named ashmaicould not be used here). One important remarkais the
process) algorithm and the communication threadlata set used here is much larger than the oneinsed
algorithm in the slave processes that run on cliests.  Luo’s original study, providing a deeper understagd

The major aspects of the main process (alignmergbout scalability.
thread, Fig. 3) are the execution and data vetifina The first test shows the performance of the Luo's
phases. During production the main process recaivesalgorithm. Fig. 5 shows the plot of running timer fo
message from the master indicating a new task or four distinct inputs. These inputs contain 500, @,00
finish signal. If it is a new task it checks theum data 2000 and 4000 sequences, with approximately 1000
location, asking for data migration if necessafythe  residues each one.
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From that plot two remarks must be made: correspond to data munching. From this figure it is

easy to see that the nodes running the slave thread

» The size of the problem strongly constrains thespend most of the time processing now (idle times
algorithm application in smaller systems due to thdower than 40%), with only the master node remajnin

restrictions on available memory idle for more than 50% of the time.
* The speedup is under 2 for any number of nodes, The performance improvement is a direct
which is a very small speedup consequence of the reduction in the communicatistsc

and the better scheduling policy introduced by dtire
utilization. This also induced a better memory &sag
which enabled to run larger problems with feweremd

Although the latter remark would indicate that the
parallelization is not useful, the former tellsttitanust
be used in order to solve larger problems.

These poor results come from the inefficient
scheduling and load balance policies in Luo'sSPeedup evaluation:As already stated, the speedup
algorithm. The plot presented in Fig. 6 shows tedl alone is not an important issue for this type of
measured in a test with 500 sequences running am fo application. It is important to reduce the time repe
nodes. The bars in that plot represent how mucle timProcessing, but it is more important to be abledtve
(in percentage) each node remained idle, waiting folarger problems, which are constrained by memory
data or synchronization. From that it is easy tticeo Usage. Besides this consideration, the speedupdev
that the load is unbalanced, with only one nodekimgr by the multithreaded algorithm is much better thiae
during most of the time. This means that the demmandspeedup provided by Luo’s algorithm. This section
on memory and CPU cycles are not proportional ovefliscusses the speedup for the alignment procedure.
the system, implying in worst resources usage. Prior to this analysis it must be said that result

published in Luo’s study cannot be compared toehes
Results for multithreaded algorithm in muscle:In  The reasons for this are two. First, Luo executsd i
order to compare the algorithms, the same testg welimplementation in ClustalW and if one compares
applied to an implementation of Muscle using thesequential results achieved there with those aeliev
multithreaded approach. The measured times arbkere will notice that the ClustalW version is rekadoly
presented in Fig. 7. The execution times achievedlower than the Muscle version (about ten times
with the proposed algorithm are clearly superi@nth slower). Second, the tests in Luo’s article were
those achieved by Luo’s algorithm. This is evident conducted over very small datasets, with the ldrges
three aspects: aligning 80 sequences with less than 400 residaels, e

while the smallest test presented here aligned 500
« The proposed algorithm is less dependent of thgequences with about 1000 residues each.

problem size, being able to execute larger problems  The size of the dataset used here created some

with fewer nodes than Luo’s algorithm approximations on the evaluation of the speedug Th

e The speedup is better than Luo’s, being above 2 in . .
almost all cases data to determine the speedup is the same thateppe

« The absolute time needed for each execution i&" Fig. 6 and 8. The speedups presented here were

lower than the time needed by Luo’s SOmeﬁmesestimated using linear regression to determine the
using less than half of that time ’ execution time for a single node when it was

unavailable. Linear regression is a lower-bound

These aspects can be exemplified comparing botRPProximation since it is known that the executiome
algorithms in a given case. For example, Luo'slgm ~ CUrve follows in an exponential for the first fewdes
demanded 443 sec to align 4000 sequences in aed nodn the system. Fig. 9 presents the speedups ctddula
configuration, while the multithreaded algorithm this way for Luo’s algorithm and Fig. 10 presertis t
performed the same alignment in 243 sec with only ssPeedups for the multithreaded algorithm.
nodes (and spent 168 sec using the same 9 nodes). Comparing both figures it is easy to see that the

The chart in Fig. 8 shows the idle times (in multithreaded approach shows speedups at least 50%
percentage) achieved with the multithreaded algorit higher than in Luo’s algorithm. For larger sets of
for the case with 500 sequences running on fousequences the difference is even higher. Thisrdiffee,
nodes. The time spent by the communication threadss stated before, represents the ability to saivget
is considered as idle time too, since it does noproblems introduced by the multithreaded algorithm.
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DISCUSSION speedup curves are more scalable than for shorter
sequences, what is not surprising.
The behavior of the multithreaded algorithm shows

previous tests were concerned with the evaluatidheo that its (_affi_ciency scales with the growth in thelgem
size. This is true either when the number of secper

2Irl1%rtlrr:aernitrr$p:gft2?1ltjrzsfg é C?'Tr?r;rg E?OTOZ?(E;( ;riqb(r;?]c their size increases. Therefore, the multithreaggaoach
related to the size of each sequence, that isuteer ' 2" interesting improvement for progressive afignts.
of residues in the sequence. It is expa_ected th_a_;elo The phylogenetic tree and the algorithm's
sequences demand more time to be aligned, sinoe thescheqyling efficiency: It has been demonstrated that
are more symbols to be evaluated. The following teSine muitithreaded approach improves the alignment
shows how the multithreaded algorithm behaves whegsficiency. It should be clear also that its major
the number of residues in each sequence is modified constraint is the data availability during the Ese of

~ The tests involved cases with 500 sequences witfask assignment. Since each task represents oreimod
sizes of 1000, 2000, 3000, 4000 and 5000 resi@l&s, the phylogenetic tree and its input data comes fitsm
retrieved from the NCBI database (Sheeryl., 2001).  child nodes, it is expected that the tree topolsigyuld
The measured speedup for these cases are pregentednfluence the algorithm efficiency. During this ea
Fig. 11. It is evident that for longer sequences th this impact is evaluated
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sequences)

The phylogenetic tree is produced during the ihitiais that the phylogenetic tree has a biological rivean
phases of the progressive alignment. This encompassand modifications on its topology could produceutess
pairwise alignment and the use of the score matrix that may not be reliable. In other words, if the
generate a binary tree, which is usually incompletee  arrangement of the tree is modified, the sequence
common approach to determine the phylogeneticisree similarities will not imply on nodes vicinity. Thimay
the UPGMA method (Larkiret al., 2007), which was lead to alignments that are only locally optimal.
modified to create a balanced binary tree from the  Figure 12 shows the execution times for both,
ordinary one. The evaluation was restricted to thebalanced and unbalanced, trees for the case wih 10
comparison of the ordinary and the balanced treees sequences. The performance of the multithreaded
the balanced tree represents the optimal casediar d algorithm is always better than the unbalanced tree
dependency (Wallacst al., 2004). execution. This result was expected since balatreed

It must be noted here that this study cannot bémply in less time spent waiting for synchronizatiand
applied in a straightforward manner. The problemehe data availability.
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Table 1: Parallelism degree using balanced andlamted trees, for  glignment in a progressive approach. The proposed
the input with 1000 sequences algorithm uses threads to eliminate the latency

yf“sr}‘a?/‘zrs Féaalrl:'r!i'ézm ‘ﬁgg;ﬁgégg introduced by synchronization and communication
100 1,00 constraints to process single tasks. It is aimed fo

2 2.00 1.75 distributed memory systems, such as Beowulf claster

3 2.99 2.35 which have an intensive use in genomic research

g z-gg gzg nowadays.

6 501 3.42 Another important contribution is the scheduling

7 6.89 3.61 policy. The scheduling and task allocation folloas

8 7.87 3.78 procedure that prioritizes pairings task-host whibe

?0 g-;g i-gg need of data movimentation is minimal. This

11 1063 408 improvesthe performance since if the task allocateal

12 11.62 4.13 given host demands for data already in that hbsty t

13 12.49 4.18 no time is spent on data migration (or interprocess

14 13.32 4.23 communication).

15 14.27 4.27

The use of separate threads for communication and
processing, besides the task allocation procedased
on data locality, allowed for performance
iGmprovements in two ways:

The reduction in the synchronization may be
numerically determined by a metric equivalent te th
system usage. This metric is defined here as th
parallelism degree of the tree. The parallelismreeg

for N processors (pd (N)) is determined as follows Eq. 2 * Achieving faster execution through the reduction in
the time needed for processes synchronization due

total— number_of _alignment_ nod to data dependencies

pd(N)= independent_ blocks @ + Reducing the need for data migration through an
efficient policy for tasks scheduling, based on the

where, independent_blocks is the number of blocks amount of data that is ready for consumption

containing at mostN node alignments that may be o

executed in parallel. The number of alignmentsniswn These characteristics enabled a better use of

from the phylogenetic tree. The number of indepahde CPU cycles and also a better memory usage. Using
blocks is empirically determined during the progies less CPU cycles and less memory enabled, at the

alignment, using the list of ready nodes as refaren end, a reduction in the amount of resources ne&ued
This metric shows how scalable the alignmentrun larger problems.
procedure is. It is easy to notice from Table 1 thlaen Another relevant result presented here is the

the tree is balanced the problem presents a bettefgorithm scalability. It was shown that the
scalability. The obvious conclusion is that oneutho multithreaded algorithm is scalable to the numbgr o
build balanced phylogenetic trees. This is notubeal sequences as well as to the size of the sequeTliss.
procedure since the biological meaning must beepred, means that it may be applied for problems and syste
leading to unbalanced trees in most situations. of several sizes.

An indirect consequence of balanced phylogenetic  One important remark here is these results were
trees is that intermediate nodes in the alignmenfchieved using larger datasets than those presamted
demand less data than nodes in the top levels eof thseveral proposed algorithms. Despite that, thelgiat
tree. Since balanced trees have more nodes in thimes were comparable to their execution timessThi
bottom levels, these nodes demand less data anecanindicates that the algorithm is actually very fast.
finished faster than upper nodes. This speeds ep th In a different direction, it was also evaluate@ th
execution and reduces the demand for memoryimpact of the phylogenetic tree topology over the
allowing its use in smaller clusters. Indeed, itswa algorithm performance. The algorithm has a
possible to perform the alignment for 1000 sequenceremarkable improvement if the tree is balanced ctvhi
with only one host using a balanced tree against twis not simple to achieve since the nodes in the tre

nodes for the unbalanced one. have biological meanings, restricting their
movimentation to reach balance.
CONCLUSION From the results achieved during this work it is

possible to devise some future steps towards a very
In this study it was presented and evaluated &fficient parallel multiple sequence alignment tool
multithreaded algorithm to perform multiple sequenc These steps include:
61



performance
algorithm. As presented here, using threads isleiab
and helpful. It enables solving multiple alignmeins

small
therefore, an interesting contribution to thisdiel

Arcuri,

Am. J. of Bioinformatics 1 (1): 50-63, 2012

Investigating the use of B-trees to store theEbedes, J. and A. Datta, 2004. Multiple sequence

phylogenetic tree, since B-trees are implicitly
balanced, aiming to evaluate the preservationsof it
biological meaning

alignment in parallel on a workstation cluster.
Bioinformatics, 20: 1193-1195. DOl:
10.1093/bioinformatics/bth055

Investigating strategies to improve speedup, eveftshikawa, M., T. Toya, M. Hoshida, K. Nitta and A.

for a larger number of hosts

Implementing a ClustalW-Multithreaded version,
by inserting the multithreaded approach into
ClustalWw

Ogiwaraet al., 1993. Multiple sequence alignment
by parallel simulated annealing. Comput. Applied
Biosci., 9: 267-273. DOLl:
10.1093/bioinformatics/9.3.267

granularity (parallelize the alignment of single

nodes) whenever the number of ready nodes is

lower than the number of idle hosts

treeterbi and parallel treeterbi algorithms: E#it,
optimal decoding for ordinary, generalized and pair
hmms. Bioinformatics, 23: 545-554. DOI:
10.1093/bioinformatics/btl659

These aspects should improve even further th&leinjung, J., N. Douglas and J. Heringa, 2002.

achieved with the multithreaded

and much less expensive, clusters,
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