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Abstract: Problem statement: The parallelization of multiple progressive alignment algorithms is a 
difficult task. All known methods have strong bottlenecks resulting from synchronization delays. This 
is even more constraining in distributed memory systems, where message passing also delays the 
interprocess communication. Despite these drawbacks, parallel computing is becoming increasingly 
necessary to perform multiple sequence alignment. Approach: In this study, it is introduced a solution 
for parallelizing multiple progressive alignments in distributed memory systems that overcomes such 
delays. Results: The proposed approach uses threads to separate actual alignment from 
synchronization and communication. It also uses a different approach to schedule independent tasks. 
Conclusion/Recommendations: The approach was intensively tested, producing a performance 
remarkably better than a largely used algorithm. It is suggested that it can be applied to improve the 
performance of some multiple alignment tools, as CLUSTALW and MUSCLE. 
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INTRODUCTION  

 
 An important field of bioinformatics is the analysis 
of amino acid sequences, which is the major form to 
produce data about evolutionary processes. Geneticists 
use protein alignments to gather information about 
genetic relationships among species or individuals. One 
method that is extensively applied is the progressive 
alignment of multiple sequences. Several multiple 
sequence alignment algorithms have been proposed but 
they present, usually, a high computational complexity 
(Rashid et al., 2009). Among these algorithms a major 
category includes the progressive approach. Although the 
solutions achieved by a progressive approach are not 
optimal, its computational cost is lower than the cost 
from exact methods. Indeed, exact methods are not 
viable when the number of sequences to be aligned 
reaches the hundreds. 
 Approximate methods, such as the progressive 
ones, are crucial since the amount of amino acid 
sequences available for comparison becomes larger and 
larger. Globally available sequence databases allow for 
accurate multiple alignments, requiring the 

development of faster alignment tools using high 
performance computing. Several such tools have been 
developed to support the genetic researches. However, 
the parallelism provided by them either are restricted to 
expensive shared-memory multiprocessors or does not 
consider fundamental aspects of parallel computing. 
 A common problem found in such tools is that they 
simply replicate processes to reach parallelism. This 
works well for certain applications, but fails miserably 
for multiple alignment in distributed memory systems. 
Since progressive multiple alignments demand frequent 
communication and synchronization, the use of simple 
replication creates a huge latency. This latency makes 
many hosts to remain idle waiting for data, what is 
worsened by poor task scheduling mechanisms. An 
often used algorithm, presented by (Luo et al., 2005) 
suffers from this problem. In that algorithm, a host may 
remain idle when its input data, stored in another host, 
cannot be sent immediately. 
 In this study a new parallel algorithm, aimed for 
distributed memory systems, is presented. This new 
algorithm circumvents the problems created by 
synchronization, communication and poor scheduling 
through the use of multihtreaded programming. 



Am. J. of Bioinformatics 1 (1): 50-63, 2012 
 

51 

 Separated threads are created to deal with alignment 
processing and with data communication. The task 
scheduling is performed by a priority algorithm based on 
data location. This approach was tested and its results 
show a noticeable improvement when compared with 
Luo’s algorithm, as will be seen in results. 
 During the remaining sections the reader finds a 
description of related works, followed by a detailed 
discussion of the proposed algorithm and the obtained 
results. The discussion is concerned with the 
experimental evaluation of this algorithm. Finally, 
some conclusions and prospective directions are 
presented in the last section. 
 
Current research in multiple sequence alignment 
algorithms: The progressive alignment consists in the 
alignment of pairs of sequences or pairs of alignments 
in a progressive way, through a previously constructed 
phylogenetic tree, which is a binary tree where each 
leaf node is a single genomic sequence, while 
intermediary and root nodes represent genetic 
relationships between families of sequences. The 
parallelization of alignment algorithms may be made 
through two distinct approaches, with different 
granularity: the first one considers each tree node as a 
single problem and the data in each node is 
decomposed and distributed among parallel processing 
elements; the second one parallelizes the tree nodes, 
managing each node as an atomic block. 
 The major concern with such approaches is the 
allocation of new tasks to idle hosts. This allocation 
must consider the dependence from primitive tasks, as 
well as the load balance and the communication 
overheads. This is a hard problem and has strong 
influence in the implementation performance. 
 Both approaches present advantages and 
drawbacks. For instance, strategies acting in the node 
level will produce a finer granularity, increasing 
communication but reducing the latency from data 
dependence, since a single tree node is dependent only 
from its children. Some strategies following this 
scheme were proposed in the literature, including 
(Lopes and Moritz, 2005; Luo et al., 2005). They were 
incorporated in alignment software tools, such as 
ClustalW-MPI (Li, 2003) and Muscle-SMP (Deng et 
al., 2006). These strategies usually keep a single 
process in each processor, which is responsible for both 
processing and data communication. This approach 
creates significant communication latency, since a 
process cannot communicate and work at the same 
time. Although priority lists can be used to minimize 
the latency (Luo et al., 2005), there is not a known 
approach which completely eliminates it. 
 Other examples for alignment approaches include the 
use of distributed architectures (Ebedes and Datta, 2004; 

Strumpen, 1995), simulated annealing (Ishikawa et al., 
1993; Zola et al., 2006), or Markov chain decomposition 
(Bhandarkar et al., 1998; Keibler et al., 2007).  
 (Strumpen, 1995) presented a geographically 
distributed parallel computing approach over the 
internet (MIMD) which improves the biological 
sequence analysis. He showed that sequence analysis 
might be done over several countries with low 
requirements on communication bandwidth, achieving 
better results than those executing in a sequential machine. 
(Du et al., 2005) used MIMD architecture to perform the 
reconstruction of large phylogenetic trees, dividing the 
datasets into smaller subproblems and distributing the 
computation load over multiple processors so that each 
processor constructs subtrees on each subproblem within a 
batch in parallel. It finally collects the resulting trees and 
merges them into a supertree. 
 (Ebedes and Datta, 2004) showed a variation of 
clustalW distributed memory implementation. It is 
showed that this approach results in a significant 
speedup. The experimental results obtained by 
Ebedes showed a speedup of over 5.5 on six 
processors for most inputs. 
 (Zola et al., 2006) proposed a method that 
simultaneously performs multiple sequence alignment 
and phylogenetic tree inference for large input data sets. 
It is described a parallel implementation of the method 
that utilizes simulated annealing metaheuristic to find 
locally optimal phylogenetic trees in reasonable time. In 
a different approach (Ishikawa et al., 1993) used 
simulated annealing heuristics in a parallel system to 
solve the problem of multiple sequence alignment. 
Basically, they solve the problem of multiple sequence 
alignments calculating the annealing temperature in 
parallel, in order to improve the simulated annealing 
algorithm result at a reasonable execution time. 
 Another application of parallelism in 
bioinformatics can be seen in (Bhandarkar et al., 1998), 
where it is presented practical experience with the 
design and implementation of a suite of parallel 
algorithms for chromosome reconstruction via ordering 
of DNA sequences. It uses parallel simulated annealing 
algorithms for physical mapping of the sequences and 
they are based on Markov chain decomposition. A 
different application of Markov chains was suggested 
by (Keibler et al., 2007), who presented two approaches 
to decode human chromosomes without turning the 
memory usage and running time prohibitive. They 
developed the Treeterbi and Parallel Treeterbi methods 
and implemented them in the TWINSCAN/ NSCAN 
gene-prediction system. Both methods use generalized 
Hidden Markov Models (HMM). 
 More different approaches includes the inversion 
of the conventional order for progressive alignment, as 
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proposed by (Kleinjung et al., 2002), use of 
decentralized cache (Trystram and Zola, 2005), protein 
foldings (Palu et al., 2007; Arcuri et al. 2010). 
 

MATERIALS AND METHODS 
 
The multithreaded approach: In distributed memory 
systems each host usually process one task at time. While 
this avoids overcharging the host's memory and 
processor, it opens the door for poor cpu utilization, 
depending on the application. As briefly discussed during 
the introduction, the progressive multiple alignment 
technique demands frequent synchronization and data 
exchange. These demands turn this technique somewhat 
inefficient when running on distributed systems. 
 The inefficiency created when performing the 
alignment in parallel comes basically from two 
conditions: Need for data synchronization and poor task 
scheduling. The data synchronization is characteristic 
from the progressive alignment, where alignments 
produced by one node are input data for its parent node 
in the phylogenetic tree. This problem cannot be 
eliminated but can be minimized through improved 
communication and task allocation. The poor 
scheduling is originated by the use of simple bag-of-
tasks scheduling, which implies in severe idle times 
waiting for remote data. This problem is also overcome 
by an improved allocation mechanism. 
 The multithreaded algorithm proposed here reduces 
the time needed for task synchronization through the 
separation between alignment processes and data 
exchange processes. It also improves the scheduling 
through a task allocation policy that priorizes the 
allocation accordingly the data location. Combining 
both modifications it is possible to improve the parallel 
progressive alignment by a large factor. These 
modifications are detailed in the next section. 
 An empirical evaluation of these improvements can 
be made considering that the total time for alignment is 
composed by three components: the time to align pairs 
of sequences (τalign), the time to transfer a pair of 
sequences to another host (τtransfer) and the time that host 
must wait for the sending hosts to become available to 
transmit (τsynch). This is represented in the following Eq. 1: 
 
ExecTime = align + transfer + synchτ τ τ  (1) 

 
 It is known that τalign cannot be affected by the 
scheduling policy. Therefore, the multithreaded algorithm 
has its performance related to the other two parcels. 
 First, τtransfer is the sum of each individual data 
transfer between hosts. The number of transfers is, at 
most, equal to the number of edges in the phylogenetic 

tree. The size of each transfer is proportional to the size 
of the input sequences in the sending node, being larger 
in the upper portion of the tree. Since the scheduling 
policy proposed here avoids these transfers, it is 
conceivable that for each node that is not a leaf node in 
the tree at least half of the transfers can be avoided. 
This is true in the upper portion of the tree, where the 
algorithm may use fewer nodes to finish the alignment. 
 Second, τsynch is the sum of the delay times to start 
a transfer that appears because the sending host is busy 
doing some computation. With the multithreaded 
approach this time can be neglected since the 
computing thread does not preclude the communication 
thread to begin the transmission. 
 It is impossible to have an exact measure of the 
number of data transfers and the time spent on them. 
However, it is conceivable that the reductions introduced 
by the scheduling policy and the multithreading are 
important. This is even more admissible for alignments 
involving larger number of sequences. 
 
Threads description: The core of this new algorithm is 
composed by two threads. One is in charge of actual 
processing, executing the alignment procedures over its 
input data. The other is in charge of data exchange, 
freeing the alignment thread from dealing with 
interprocess communication and synchronization. 
 The basic structure for this approach is shown in 
Fig. 1. From that it is possible to see that threads 
running in one host communicate to each other through 
the local memory. Remote hosts communicate through 
the communication threads residing on each host. 
 The use of separate threads for data munching and 
data exchange allows every host to keep processing a 
given task while another task is waiting for data. 
Similarly, a host that receives a request for data (already 
available in the host memory) might send it back 
immediately, even if it is processing a running task. 
 As a consequence of the data exchange 
optimization, whenever a processor becomes idle, any 
active task may be scheduled, independently from the 
locality of its input data. If the task requires data that is 
not locally stored, a message is sent by this task to the 
host keeping the data, through the involved 
communication threads, ordering the immediate data 
transfer to the requiring task. 
 Although the improvements made by the 
separation of threads are significant, the algorithm 
can be further improved through the use of a 
scheduling policy more efficient than the 
conventional bag-of-tasks. The goal here is to reduce 
the amount of data exchanges that are needed in 
order to process the whole alignment.  
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Fig. 1: Functional diagram for threads interaction 

 

 
 
Fig. 2: Flowchart of the master process algorithm of the strategy based on the multithreaded approach 
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Fig. 3: Flowchart of the main process algorithm of the strategy based on the multithreaded approach 
 

 
 
Fig. 4: Flowchart of the communication thread algorithm in the slave processes of the strategy based on the 

multithreaded approach 
 
With the conventional bag-of-tasks policy, if a given 
processor becomes idle, any node (in the phylogenetic 
tree) that is already ready to processing is allocated to 
it. This allocation may result in zero, one or two data 
exchanges, depending on the place where the children 
of this node were executed. 

 In order to minimize the number of data 
exchanges in a given scheduling instant, three priority 
scheduling levels are defined. These scheduling levels 
of a given task depend upon the locality of the data 
needed for its execution. Each ready task has its 
priority defined as follows: 
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• High, when the data produced by its children are 
located in the same idle host 

• Mean, when either only one child is in the same 
host or both children are located in different hosts, 
but at least one of them is located in an idle host 

• Low, when both children are located in busy hosts 
 
 The pairing task-host is performed after priority 
classification, allocating the pairs with the highest 
priority. This procedure stops either when all hosts 
become busy or the tasks queue becomes empty. After 
each allocation the priorities are redefined, since the 
allocated host would be the best host for a different 
task. In such case, that task must receive a new priority. 
 
Algorithm implementation:  An implementation of the 
multithreaded algorithm was made using the Muscle 
alignment tool as its basic platform. Several changes 
were performed in order to verify several distinct 
possibilities of parallelization. The parallelism used the 
bag-of-tasks model, where a master process is in charge 
of distributing tasks and controlling communication. 
The actual processing tasks are named as slaves, being 
composed by the alignment and communication 
threads. The flowcharts presented in Fig. 2-4 represent 
this implementation. 
 Figure 2 depicts the flowchart of the master 
process, where the major points are the task allocation 
procedure (lower left) and the task 
preparation/execution procedure (upper right). Initially, 
it allocates the tasks to the slaves until all nodes are 
busy. After that, the master waits for each host to signal 
that they are ready to execute and then starts to create 
threads to execute tasks on the slave nodes as soon as a 
node becomes idle.  When a node becomes idle the 
master process schedules the task with the highest 
priority to it. If all required data is located in that host, 
the master process sends a message to the slave to 
execute the task, otherwise the master sends a message 
to the involved hosts to move the dependent data and 
then the task execution is performed. After this step, the 
master waits the acknowledgment of each task 
completion, repeating the procedure until every 
alignment is performed. 
 Figure 3 and 4 show the flowcharts corresponding, 
respectively, to the alignment thread (named as main 
process) algorithm and the communication thread 
algorithm in the slave processes that run on client hosts.  
 The major aspects of the main process (alignment 
thread, Fig. 3) are the execution and data verification 
phases. During production the main process receives a 
message from the master indicating a new task or a 
finish signal. If it is a new task it checks the input data 
location, asking for data migration if necessary. If the 

data is not available it will wait for the communication 
thread to provide the data, performing the alignment as 
soon as all data become available. 
 The communication thread acts in two different 
ways. If it receives a request message it sends the data 
from its local memory to the host that is demanding it. 
If it receives migrated data it stores it in the local 
memory, signaling the alignment thread that the data is 
already available. 
 

RESULTS 
 
 The evaluation of the multithreaded approach was 
performed through experimental benchmarking. The 
alignment was conducted over sequences extracted 
from the NCBI (The database is found at 
www.ncbi.nlm.nih.gov) (Sherry et al., 2001). During 
the benchmarks the variable parameters in the 
sequences were the total number of aligned sequences 
and the number of residues in each sequence (that is, 
the sequence length). 
 The tests were executed in a Beowulf cluster 
composed by 16 nodes, each with an Intel• Pentium• 4 
CPU of 2.80GHz and 1 Gbyte of memory. The machines 
were connected through a dedicated switch of 1 Gbit/s.  
 In order to evaluate the algorithm the tests focused 
in its speedup, scalability and dependence on the 
phylogenetic tree. The results were compared against 
Luo’s algorithm, since it is the only one that follows the 
dynamic approach for tasks assignment through clusters 
nodes. The first part of this section presents the results 
for Luo’s algorithm implemented in the Muscle tool, 
followed by speedup and scalability tests of the 
multihtreaded proposal. The section ends with the 
investigation about the influence of phylogenetic tree 
structure over execution time. 
 
Results for Luo’s algorithm in muscle: In order to 
have a broader view of Luo’ed in the original study due 
to two major reasons. First they are implemented in 
different alignment tools (ClustalW and Muscle), second 
they were run over different data sets, with different 
number of residues and sequences (since the original set 
could not be used here). One important remark is that, the 
data set used here is much larger than the one used in 
Luo’s original study, providing a deeper understanding 
about scalability. 
 The first test shows the performance of the Luo's 
algorithm. Fig. 5 shows the plot of running time for 
four distinct inputs. These inputs contain 500, 1000, 
2000 and 4000 sequences, with approximately 1000 
residues each one. 
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Fig. 5: Execution time of Luo’s strategy for progressive alignment 

 

 
 

Fig. 6: Idle CPU times for Luo’s algorihtm (500 sequences and 3 slaves) 
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Fig. 7: Execution time of the multithreaded strategy 

 

 
 

Fig. 8: Idle CPU times for the multithreaded algorithm (500 sequences and 3 slaves) 
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From that plot two remarks must be made: 
 
• The size of the problem strongly constrains the 

algorithm application in smaller systems due to the 
restrictions on available memory 

• The speedup is under 2 for any number of nodes, 
which is a very small speedup 

 
 Although the latter remark would indicate that the 
parallelization is not useful, the former tells that it must 
be used in order to solve larger problems. 
 These poor results come from the inefficient 
scheduling and load balance policies in Luo’s 
algorithm. The plot presented in Fig. 6 shows the load 
measured in a test with 500 sequences running on four 
nodes. The bars in that plot represent how much time 
(in percentage) each node remained idle, waiting for 
data or synchronization. From that it is easy to notice 
that the load is unbalanced, with only one node working 
during most of the time. This means that the demands 
on memory and CPU cycles are not proportional over 
the system, implying in worst resources usage. 
 
Results for multithreaded algorithm in muscle: In 
order to compare the algorithms, the same tests were 
applied to an implementation of Muscle using the 
multithreaded approach. The measured times are 
presented in Fig. 7. The execution times achieved 
with the proposed algorithm are clearly superior than 
those achieved by Luo’s algorithm. This is evident in 
three aspects: 
 
• The proposed algorithm is less dependent of the 

problem size, being able to execute larger problems 
with fewer nodes than Luo’s algorithm 

• The speedup is better than Luo’s, being above 2 in 
almost all cases 

• The absolute time needed for each execution is 
lower than the time needed by Luo’s, sometimes 
using less than half of that time 

 
 These aspects can be exemplified comparing both 
algorithms in a given case. For example, Luo’s algorithm 
demanded 443 sec to align 4000 sequences in a 9 nodes 
configuration, while the multithreaded algorithm 
performed the same alignment in 243 sec with only 5 
nodes (and spent 168 sec using the same 9 nodes). 
 The chart in Fig. 8 shows the idle times (in 
percentage) achieved with the multithreaded algorithm 
for the case with 500 sequences running on four 
nodes. The time spent by the communication threads 
is considered as idle time too, since it does not 

correspond to data munching. From this figure it is 
easy to see that the nodes running the slave threads 
spend most of the time processing now (idle times 
lower than 40%), with only the master node remaining 
idle for more than 50% of the time. 
 The performance improvement is a direct 
consequence of the reduction in the communication costs 
and the better scheduling policy introduced by thread 
utilization. This also induced a better memory usage, 
which enabled to run larger problems with fewer nodes. 
 
Speedup evaluation: As already stated, the speedup 
alone is not an important issue for this type of 
application. It is important to reduce the time spent 
processing, but it is more important to be able to solve 
larger problems, which are constrained by memory 
usage. Besides this consideration, the speedup provided 
by the multithreaded algorithm is much better than the 
speedup provided by Luo’s algorithm. This section 
discusses the speedup for the alignment procedure. 
 Prior to this analysis it must be said that results 
published in Luo’s study cannot be compared to these. 
The reasons for this are two. First, Luo executed its 
implementation in ClustalW and if one compares 
sequential results achieved there with those achieved 
here will notice that the ClustalW version is remarkably 
slower than the Muscle version (about ten times 
slower). Second, the tests in Luo’s article were 
conducted over very small datasets, with the largest one 
aligning 80 sequences with less than 400 residues each, 
while the smallest test presented here aligned 500 
sequences with about 1000 residues each. 
 The size of the dataset used here created some 
approximations on the evaluation of the speedup. The 
data to determine the speedup is the same that appears 
on Fig. 6 and 8. The speedups presented here were 
estimated using linear regression to determine the 
execution time for a single node when it was 
unavailable. Linear regression is a lower-bound 
approximation since it is known that the execution time 
curve follows in an exponential for the first few nodes 
in the system. Fig. 9 presents the speedups calculated 
this way for Luo’s algorithm and Fig. 10 presents the 
speedups for the multithreaded algorithm. 
 Comparing both figures it is easy to see that the 
multithreaded approach shows speedups at least 50% 
higher than in Luo’s algorithm. For larger sets of 
sequences the difference is even higher. This difference, 
as stated before, represents the ability to solve larger 
problems introduced by the multithreaded algorithm. 



Am. J. of Bioinformatics 1 (1): 50-63, 2012 
 

59 

 
 

Fig. 9: Speedup curves achieved with Luo’s algorithm 
 

 
 

Fig. 10: Speedup curves achieved with multithreaded algorithm 

 
DISCUSSION 

 
Evaluating the variation in the sequence size: The 
previous tests were concerned with the evaluation of the 
alignment procedure for different number of sequences. 
Another important aspect in the biological problem is 
related to the size of each sequence, that is, the number 
of residues in the sequence. It is expected that longer 
sequences demand more time to be aligned, since there 
are more symbols to be evaluated. The following test 
shows how the multithreaded algorithm behaves when 
the number of residues in each sequence is modified.  
 The tests involved cases with 500 sequences with 
sizes of 1000, 2000, 3000, 4000 and 5000 residues, also 
retrieved from the NCBI database (Sherry et al., 2001). 
The measured speedup for these cases are presented in 
Fig. 11. It is evident that for longer sequences the 

speedup curves are more scalable than for shorter 
sequences, what is not surprising. 
 The behavior of the multithreaded algorithm shows 
that its efficiency scales with the growth in the problem 
size. This is true either when the number of sequences or 
their size increases. Therefore, the multithreaded approach 
is an interesting improvement for progressive alignments. 
 
The phylogenetic tree and the algorithm’s 
scheduling efficiency: It has been demonstrated that 
the multithreaded approach improves the alignment 
efficiency. It should be clear also that its major 
constraint is the data availability during the process of 
task assignment. Since each task represents one node in 
the phylogenetic tree and its input data comes from its 
child nodes, it is expected that the tree topology should 
influence the algorithm efficiency. During this section 
this impact is evaluated
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Fig. 11: Speedups achieved with sequence size variation (500 sequences) 
 

 
 
Fig. 12: Running times for the multithreaded algorithm using a balanced tree and an unbalanced tree (1000 

sequences) 
 
The phylogenetic tree is produced during the initial 
phases of the progressive alignment. This encompass a 
pairwise alignment and the use of the score matrix to 
generate a binary tree, which is usually incomplete. One 
common approach to determine the phylogenetic tree is 
the UPGMA method (Larkin et al., 2007), which was 
modified to create a balanced binary tree from the 
ordinary one. The evaluation was restricted to the 
comparison of the ordinary and the balanced trees since 
the balanced tree represents the optimal case for data 
dependency (Wallace et al., 2004). 
 It must be noted here that this study cannot be 
applied in a straightforward manner. The problem here 

is that the phylogenetic tree has a biological meaning 
and modifications on its topology could produce results 
that may not be reliable. In other words, if the 
arrangement of the tree is modified, the sequence 
similarities will not imply on nodes vicinity. This may 
lead to alignments that are only locally optimal. 
 Figure 12 shows the execution times for both, 
balanced and unbalanced, trees for the case with 1000 
sequences. The performance of the multithreaded 
algorithm is always better than the unbalanced tree 
execution. This result was expected since balanced trees 
imply in less time spent waiting for synchronization and 
data availability. 
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Table 1: Parallelism degree using balanced and unbalanced trees, for 
the input with 1000 sequences 

Number Parallelism degree-pd (N) 
of slaves Balanced Not balanced 
1 1.00 1.00 
2 2.00 1.75 
3 2.99 2.35 
4 3.98 2.78 
5 4.95 3.15 
6 5.91 3.42 
7 6.89 3.61 
8 7.87 3.78 
9 8.76 3.89 
10 9.70 4.00 
11 10.63 4.08 
12 11.62 4.13 
13 12.49 4.18 
14 13.32 4.23 
15 14.27 4.27 

 
 The reduction in the synchronization may be 
numerically determined by a metric equivalent to the 
system usage. This metric is defined here as the 
parallelism degree of the tree. The parallelism degree 
for N processors (pd (N)) is determined as follows Eq. 2: 
 

total number _ of _ alignment _ nodes
pd(N)

independent _ blocks

−=  (2) 

 
where, independent_blocks is the number of blocks 
containing at most N node alignments that may be 
executed in parallel. The number of alignments is known 
from the phylogenetic tree. The number of independent 
blocks is empirically determined during the progressive 
alignment, using the list of ready nodes as reference. 
 This metric shows how scalable the alignment 
procedure is. It is easy to notice from Table 1 that when 
the tree is balanced the problem presents a better 
scalability. The obvious conclusion is that one should 
build balanced phylogenetic trees. This is not the usual 
procedure since the biological meaning must be preserved, 
leading to unbalanced trees in most situations. 
 An indirect consequence of balanced phylogenetic 
trees is that intermediate nodes in the alignment 
demand less data than nodes in the top levels of the 
tree. Since balanced trees have more nodes in the 
bottom levels, these nodes demand less data and can be 
finished faster than upper nodes. This speeds up the 
execution and reduces the demand for memory, 
allowing its use in smaller clusters. Indeed, it was 
possible to perform the alignment for 1000 sequences 
with only one host using a balanced tree against two 
nodes for the unbalanced one. 
 

CONCLUSION  
 
 In this study it was presented and evaluated a 
multithreaded algorithm to perform multiple sequence 

alignment in a progressive approach. The proposed 
algorithm uses threads to eliminate the latency 
introduced by synchronization and communication 
constraints to process single tasks. It is aimed for 
distributed memory systems, such as Beowulf clusters, 
which have an intensive use in genomic research 
nowadays. 
 Another important contribution is the scheduling 
policy. The scheduling and task allocation follows a 
procedure that prioritizes pairings task-host where the 
need of data movimentation is minimal. This 
improvesthe performance since if the task allocated to a 
given host demands for data already in that host, then 
no time is spent on data migration (or interprocess 
communication). 
 The use of separate threads for communication and 
processing, besides the task allocation procedure based 
on data locality, allowed for performance 
improvements in two ways: 
 
• Achieving faster execution through the reduction in 

the time needed for processes synchronization due 
to data dependencies 

• Reducing the need for data migration through an 
efficient policy for tasks scheduling, based on the 
amount of data that is ready for consumption 

 
 These characteristics enabled a better use of 
CPU cycles and also a better memory usage. Using 
less CPU cycles and less memory enabled, at the 
end, a reduction in the amount of resources needed to 
run larger problems. 
 Another relevant result presented here is the 
algorithm scalability. It was shown that the 
multithreaded algorithm is scalable to the number of 
sequences as well as to the size of the sequences. This 
means that it may be applied for problems and systems 
of several sizes. 
 One important remark here is these results were 
achieved using larger datasets than those presented in 
several proposed algorithms. Despite that, the execution 
times were comparable to their execution times. This 
indicates that the algorithm is actually very fast. 
 In a different direction, it was also evaluated the 
impact of the phylogenetic tree topology over the 
algorithm performance. The algorithm has a 
remarkable improvement if the tree is balanced, which 
is not simple to achieve since the nodes in the tree 
have biological meanings, restricting their 
movimentation to reach balance. 
 From the results achieved during this work it is 
possible to devise some future steps towards a very 
efficient parallel multiple sequence alignment tool. 
These steps include: 
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• Investigating the use of B-trees to store the 
phylogenetic tree, since B-trees are implicitly 
balanced, aiming to evaluate the preservation of its 
biological meaning 

• Investigating strategies to improve speedup, even 
for a larger number of hosts 

• Implementing a ClustalW-Multithreaded version, 
by inserting the multithreaded approach into 
ClustalW 

• Investigating the possibility of using a finer 
granularity (parallelize the alignment of single 
nodes) whenever the number of ready nodes is 
lower than the number of idle hosts 

 
 These aspects should improve even further the 
performance achieved with the multithreaded 
algorithm. As presented here, using threads is viable 
and helpful. It enables solving multiple alignments in 
small and much less expensive, clusters, being, 
therefore, an interesting contribution to this field. 
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