
American Journal of Bioinformatics 1 (1): 50-63, 2012
ISSN 1948-9862
© 2012 Science Publications

Corresponding Author: Geraldo F.D. Zafalon, Departamento de Ciencias de Computacao e Estatística, Sao Paulo State
University, Sao Jose do Rio Preto, Sao Paulo, Brazil

50

Using Threads to Overcome Synchronization

Delays in Parallel Multiple Progressive Alignment Algorithms

1Evandro A. Marucci, 1,2Geraldo F.D. Zafalon, 1Julio C. Momente,
1Alex R. Pinto, 2Jose R.A. Amazonas, 3Yang Shiyou, 2Liria M. Sato and 1Jose M. Machado

1Departamento de Ciencias de Computacao e Estatistica,
Sao Paulo State University, Sao Jose do Rio Preto, SP, Brazil

2Escola Politecnica, University of Sao Paulo, Sao Paulo, SP, Brazil
3College of Electrical Engineering, Zhejiang University, Hangzhou, 310027, China

Abstract: Problem statement: The parallelization of multiple progressive alignment algorithms is a
difficult task. All known methods have strong bottlenecks resulting from synchronization delays. This
is even more constraining in distributed memory systems, where message passing also delays the
interprocess communication. Despite these drawbacks, parallel computing is becoming increasingly
necessary to perform multiple sequence alignment. Approach: In this study, it is introduced a solution
for parallelizing multiple progressive alignments in distributed memory systems that overcomes such
delays. Results: The proposed approach uses threads to separate actual alignment from
synchronization and communication. It also uses a different approach to schedule independent tasks.
Conclusion/Recommendations: The approach was intensively tested, producing a performance
remarkably better than a largely used algorithm. It is suggested that it can be applied to improve the
performance of some multiple alignment tools, as CLUSTALW and MUSCLE.

Key words: Sequence alignment algorithms, Hidden Markov Models (HMM), performance

remarkably, progressive approach, computational complexity, represent genetic

INTRODUCTION

 An important field of bioinformatics is the analysis
of amino acid sequences, which is the major form to
produce data about evolutionary processes. Geneticists
use protein alignments to gather information about
genetic relationships among species or individuals. One
method that is extensively applied is the progressive
alignment of multiple sequences. Several multiple
sequence alignment algorithms have been proposed but
they present, usually, a high computational complexity
(Rashid et al., 2009). Among these algorithms a major
category includes the progressive approach. Although the
solutions achieved by a progressive approach are not
optimal, its computational cost is lower than the cost
from exact methods. Indeed, exact methods are not
viable when the number of sequences to be aligned
reaches the hundreds.
 Approximate methods, such as the progressive
ones, are crucial since the amount of amino acid
sequences available for comparison becomes larger and
larger. Globally available sequence databases allow for
accurate multiple alignments, requiring the

development of faster alignment tools using high
performance computing. Several such tools have been
developed to support the genetic researches. However,
the parallelism provided by them either are restricted to
expensive shared-memory multiprocessors or does not
consider fundamental aspects of parallel computing.
 A common problem found in such tools is that they
simply replicate processes to reach parallelism. This
works well for certain applications, but fails miserably
for multiple alignment in distributed memory systems.
Since progressive multiple alignments demand frequent
communication and synchronization, the use of simple
replication creates a huge latency. This latency makes
many hosts to remain idle waiting for data, what is
worsened by poor task scheduling mechanisms. An
often used algorithm, presented by (Luo et al., 2005)
suffers from this problem. In that algorithm, a host may
remain idle when its input data, stored in another host,
cannot be sent immediately.
 In this study a new parallel algorithm, aimed for
distributed memory systems, is presented. This new
algorithm circumvents the problems created by
synchronization, communication and poor scheduling
through the use of multihtreaded programming.

Am. J. of Bioinformatics 1 (1): 50-63, 2012

51

 Separated threads are created to deal with alignment
processing and with data communication. The task
scheduling is performed by a priority algorithm based on
data location. This approach was tested and its results
show a noticeable improvement when compared with
Luo’s algorithm, as will be seen in results.
 During the remaining sections the reader finds a
description of related works, followed by a detailed
discussion of the proposed algorithm and the obtained
results. The discussion is concerned with the
experimental evaluation of this algorithm. Finally,
some conclusions and prospective directions are
presented in the last section.

Current research in multiple sequence alignment
algorithms: The progressive alignment consists in the
alignment of pairs of sequences or pairs of alignments
in a progressive way, through a previously constructed
phylogenetic tree, which is a binary tree where each
leaf node is a single genomic sequence, while
intermediary and root nodes represent genetic
relationships between families of sequences. The
parallelization of alignment algorithms may be made
through two distinct approaches, with different
granularity: the first one considers each tree node as a
single problem and the data in each node is
decomposed and distributed among parallel processing
elements; the second one parallelizes the tree nodes,
managing each node as an atomic block.
 The major concern with such approaches is the
allocation of new tasks to idle hosts. This allocation
must consider the dependence from primitive tasks, as
well as the load balance and the communication
overheads. This is a hard problem and has strong
influence in the implementation performance.
 Both approaches present advantages and
drawbacks. For instance, strategies acting in the node
level will produce a finer granularity, increasing
communication but reducing the latency from data
dependence, since a single tree node is dependent only
from its children. Some strategies following this
scheme were proposed in the literature, including
(Lopes and Moritz, 2005; Luo et al., 2005). They were
incorporated in alignment software tools, such as
ClustalW-MPI (Li, 2003) and Muscle-SMP (Deng et
al., 2006). These strategies usually keep a single
process in each processor, which is responsible for both
processing and data communication. This approach
creates significant communication latency, since a
process cannot communicate and work at the same
time. Although priority lists can be used to minimize
the latency (Luo et al., 2005), there is not a known
approach which completely eliminates it.
 Other examples for alignment approaches include the
use of distributed architectures (Ebedes and Datta, 2004;

Strumpen, 1995), simulated annealing (Ishikawa et al.,
1993; Zola et al., 2006), or Markov chain decomposition
(Bhandarkar et al., 1998; Keibler et al., 2007).
 (Strumpen, 1995) presented a geographically
distributed parallel computing approach over the
internet (MIMD) which improves the biological
sequence analysis. He showed that sequence analysis
might be done over several countries with low
requirements on communication bandwidth, achieving
better results than those executing in a sequential machine.
(Du et al., 2005) used MIMD architecture to perform the
reconstruction of large phylogenetic trees, dividing the
datasets into smaller subproblems and distributing the
computation load over multiple processors so that each
processor constructs subtrees on each subproblem within a
batch in parallel. It finally collects the resulting trees and
merges them into a supertree.
 (Ebedes and Datta, 2004) showed a variation of
clustalW distributed memory implementation. It is
showed that this approach results in a significant
speedup. The experimental results obtained by
Ebedes showed a speedup of over 5.5 on six
processors for most inputs.
 (Zola et al., 2006) proposed a method that
simultaneously performs multiple sequence alignment
and phylogenetic tree inference for large input data sets.
It is described a parallel implementation of the method
that utilizes simulated annealing metaheuristic to find
locally optimal phylogenetic trees in reasonable time. In
a different approach (Ishikawa et al., 1993) used
simulated annealing heuristics in a parallel system to
solve the problem of multiple sequence alignment.
Basically, they solve the problem of multiple sequence
alignments calculating the annealing temperature in
parallel, in order to improve the simulated annealing
algorithm result at a reasonable execution time.
 Another application of parallelism in
bioinformatics can be seen in (Bhandarkar et al., 1998),
where it is presented practical experience with the
design and implementation of a suite of parallel
algorithms for chromosome reconstruction via ordering
of DNA sequences. It uses parallel simulated annealing
algorithms for physical mapping of the sequences and
they are based on Markov chain decomposition. A
different application of Markov chains was suggested
by (Keibler et al., 2007), who presented two approaches
to decode human chromosomes without turning the
memory usage and running time prohibitive. They
developed the Treeterbi and Parallel Treeterbi methods
and implemented them in the TWINSCAN/ NSCAN
gene-prediction system. Both methods use generalized
Hidden Markov Models (HMM).
 More different approaches includes the inversion
of the conventional order for progressive alignment, as

Am. J. of Bioinformatics 1 (1): 50-63, 2012

52

proposed by (Kleinjung et al., 2002), use of
decentralized cache (Trystram and Zola, 2005), protein
foldings (Palu et al., 2007; Arcuri et al. 2010).

MATERIALS AND METHODS

The multithreaded approach: In distributed memory
systems each host usually process one task at time. While
this avoids overcharging the host's memory and
processor, it opens the door for poor cpu utilization,
depending on the application. As briefly discussed during
the introduction, the progressive multiple alignment
technique demands frequent synchronization and data
exchange. These demands turn this technique somewhat
inefficient when running on distributed systems.
 The inefficiency created when performing the
alignment in parallel comes basically from two
conditions: Need for data synchronization and poor task
scheduling. The data synchronization is characteristic
from the progressive alignment, where alignments
produced by one node are input data for its parent node
in the phylogenetic tree. This problem cannot be
eliminated but can be minimized through improved
communication and task allocation. The poor
scheduling is originated by the use of simple bag-of-
tasks scheduling, which implies in severe idle times
waiting for remote data. This problem is also overcome
by an improved allocation mechanism.
 The multithreaded algorithm proposed here reduces
the time needed for task synchronization through the
separation between alignment processes and data
exchange processes. It also improves the scheduling
through a task allocation policy that priorizes the
allocation accordingly the data location. Combining
both modifications it is possible to improve the parallel
progressive alignment by a large factor. These
modifications are detailed in the next section.
 An empirical evaluation of these improvements can
be made considering that the total time for alignment is
composed by three components: the time to align pairs
of sequences (τalign), the time to transfer a pair of
sequences to another host (τtransfer) and the time that host
must wait for the sending hosts to become available to
transmit (τsynch). This is represented in the following Eq. 1:

ExecTime = align + transfer + synchτ τ τ (1)

 It is known that τalign cannot be affected by the
scheduling policy. Therefore, the multithreaded algorithm
has its performance related to the other two parcels.
 First, τtransfer is the sum of each individual data
transfer between hosts. The number of transfers is, at
most, equal to the number of edges in the phylogenetic

tree. The size of each transfer is proportional to the size
of the input sequences in the sending node, being larger
in the upper portion of the tree. Since the scheduling
policy proposed here avoids these transfers, it is
conceivable that for each node that is not a leaf node in
the tree at least half of the transfers can be avoided.
This is true in the upper portion of the tree, where the
algorithm may use fewer nodes to finish the alignment.
 Second, τsynch is the sum of the delay times to start
a transfer that appears because the sending host is busy
doing some computation. With the multithreaded
approach this time can be neglected since the
computing thread does not preclude the communication
thread to begin the transmission.
 It is impossible to have an exact measure of the
number of data transfers and the time spent on them.
However, it is conceivable that the reductions introduced
by the scheduling policy and the multithreading are
important. This is even more admissible for alignments
involving larger number of sequences.

Threads description: The core of this new algorithm is
composed by two threads. One is in charge of actual
processing, executing the alignment procedures over its
input data. The other is in charge of data exchange,
freeing the alignment thread from dealing with
interprocess communication and synchronization.
 The basic structure for this approach is shown in
Fig. 1. From that it is possible to see that threads
running in one host communicate to each other through
the local memory. Remote hosts communicate through
the communication threads residing on each host.
 The use of separate threads for data munching and
data exchange allows every host to keep processing a
given task while another task is waiting for data.
Similarly, a host that receives a request for data (already
available in the host memory) might send it back
immediately, even if it is processing a running task.
 As a consequence of the data exchange
optimization, whenever a processor becomes idle, any
active task may be scheduled, independently from the
locality of its input data. If the task requires data that is
not locally stored, a message is sent by this task to the
host keeping the data, through the involved
communication threads, ordering the immediate data
transfer to the requiring task.
 Although the improvements made by the
separation of threads are significant, the algorithm
can be further improved through the use of a
scheduling policy more efficient than the
conventional bag-of-tasks. The goal here is to reduce
the amount of data exchanges that are needed in
order to process the whole alignment.

Am. J. of Bioinformatics 1 (1): 50-63, 2012

53

Fig. 1: Functional diagram for threads interaction

Fig. 2: Flowchart of the master process algorithm of the strategy based on the multithreaded approach

Am. J. of Bioinformatics 1 (1): 50-63, 2012

54

Fig. 3: Flowchart of the main process algorithm of the strategy based on the multithreaded approach

Fig. 4: Flowchart of the communication thread algorithm in the slave processes of the strategy based on the

multithreaded approach

With the conventional bag-of-tasks policy, if a given
processor becomes idle, any node (in the phylogenetic
tree) that is already ready to processing is allocated to
it. This allocation may result in zero, one or two data
exchanges, depending on the place where the children
of this node were executed.

 In order to minimize the number of data
exchanges in a given scheduling instant, three priority
scheduling levels are defined. These scheduling levels
of a given task depend upon the locality of the data
needed for its execution. Each ready task has its
priority defined as follows:

Am. J. of Bioinformatics 1 (1): 50-63, 2012

55

• High, when the data produced by its children are
located in the same idle host

• Mean, when either only one child is in the same
host or both children are located in different hosts,
but at least one of them is located in an idle host

• Low, when both children are located in busy hosts

 The pairing task-host is performed after priority
classification, allocating the pairs with the highest
priority. This procedure stops either when all hosts
become busy or the tasks queue becomes empty. After
each allocation the priorities are redefined, since the
allocated host would be the best host for a different
task. In such case, that task must receive a new priority.

Algorithm implementation: An implementation of the
multithreaded algorithm was made using the Muscle
alignment tool as its basic platform. Several changes
were performed in order to verify several distinct
possibilities of parallelization. The parallelism used the
bag-of-tasks model, where a master process is in charge
of distributing tasks and controlling communication.
The actual processing tasks are named as slaves, being
composed by the alignment and communication
threads. The flowcharts presented in Fig. 2-4 represent
this implementation.
 Figure 2 depicts the flowchart of the master
process, where the major points are the task allocation
procedure (lower left) and the task
preparation/execution procedure (upper right). Initially,
it allocates the tasks to the slaves until all nodes are
busy. After that, the master waits for each host to signal
that they are ready to execute and then starts to create
threads to execute tasks on the slave nodes as soon as a
node becomes idle. When a node becomes idle the
master process schedules the task with the highest
priority to it. If all required data is located in that host,
the master process sends a message to the slave to
execute the task, otherwise the master sends a message
to the involved hosts to move the dependent data and
then the task execution is performed. After this step, the
master waits the acknowledgment of each task
completion, repeating the procedure until every
alignment is performed.
 Figure 3 and 4 show the flowcharts corresponding,
respectively, to the alignment thread (named as main
process) algorithm and the communication thread
algorithm in the slave processes that run on client hosts.
 The major aspects of the main process (alignment
thread, Fig. 3) are the execution and data verification
phases. During production the main process receives a
message from the master indicating a new task or a
finish signal. If it is a new task it checks the input data
location, asking for data migration if necessary. If the

data is not available it will wait for the communication
thread to provide the data, performing the alignment as
soon as all data become available.
 The communication thread acts in two different
ways. If it receives a request message it sends the data
from its local memory to the host that is demanding it.
If it receives migrated data it stores it in the local
memory, signaling the alignment thread that the data is
already available.

RESULTS

 The evaluation of the multithreaded approach was
performed through experimental benchmarking. The
alignment was conducted over sequences extracted
from the NCBI (The database is found at
www.ncbi.nlm.nih.gov) (Sherry et al., 2001). During
the benchmarks the variable parameters in the
sequences were the total number of aligned sequences
and the number of residues in each sequence (that is,
the sequence length).
 The tests were executed in a Beowulf cluster
composed by 16 nodes, each with an Intel• Pentium• 4
CPU of 2.80GHz and 1 Gbyte of memory. The machines
were connected through a dedicated switch of 1 Gbit/s.
 In order to evaluate the algorithm the tests focused
in its speedup, scalability and dependence on the
phylogenetic tree. The results were compared against
Luo’s algorithm, since it is the only one that follows the
dynamic approach for tasks assignment through clusters
nodes. The first part of this section presents the results
for Luo’s algorithm implemented in the Muscle tool,
followed by speedup and scalability tests of the
multihtreaded proposal. The section ends with the
investigation about the influence of phylogenetic tree
structure over execution time.

Results for Luo’s algorithm in muscle: In order to
have a broader view of Luo’ed in the original study due
to two major reasons. First they are implemented in
different alignment tools (ClustalW and Muscle), second
they were run over different data sets, with different
number of residues and sequences (since the original set
could not be used here). One important remark is that, the
data set used here is much larger than the one used in
Luo’s original study, providing a deeper understanding
about scalability.
 The first test shows the performance of the Luo's
algorithm. Fig. 5 shows the plot of running time for
four distinct inputs. These inputs contain 500, 1000,
2000 and 4000 sequences, with approximately 1000
residues each one.

Am. J. of Bioinformatics 1 (1): 50-63, 2012

56

Fig. 5: Execution time of Luo’s strategy for progressive alignment

Fig. 6: Idle CPU times for Luo’s algorihtm (500 sequences and 3 slaves)

Am. J. of Bioinformatics 1 (1): 50-63, 2012

57

Fig. 7: Execution time of the multithreaded strategy

Fig. 8: Idle CPU times for the multithreaded algorithm (500 sequences and 3 slaves)

Am. J. of Bioinformatics 1 (1): 50-63, 2012

58

From that plot two remarks must be made:

• The size of the problem strongly constrains the

algorithm application in smaller systems due to the
restrictions on available memory

• The speedup is under 2 for any number of nodes,
which is a very small speedup

 Although the latter remark would indicate that the
parallelization is not useful, the former tells that it must
be used in order to solve larger problems.
 These poor results come from the inefficient
scheduling and load balance policies in Luo’s
algorithm. The plot presented in Fig. 6 shows the load
measured in a test with 500 sequences running on four
nodes. The bars in that plot represent how much time
(in percentage) each node remained idle, waiting for
data or synchronization. From that it is easy to notice
that the load is unbalanced, with only one node working
during most of the time. This means that the demands
on memory and CPU cycles are not proportional over
the system, implying in worst resources usage.

Results for multithreaded algorithm in muscle: In
order to compare the algorithms, the same tests were
applied to an implementation of Muscle using the
multithreaded approach. The measured times are
presented in Fig. 7. The execution times achieved
with the proposed algorithm are clearly superior than
those achieved by Luo’s algorithm. This is evident in
three aspects:

• The proposed algorithm is less dependent of the

problem size, being able to execute larger problems
with fewer nodes than Luo’s algorithm

• The speedup is better than Luo’s, being above 2 in
almost all cases

• The absolute time needed for each execution is
lower than the time needed by Luo’s, sometimes
using less than half of that time

 These aspects can be exemplified comparing both
algorithms in a given case. For example, Luo’s algorithm
demanded 443 sec to align 4000 sequences in a 9 nodes
configuration, while the multithreaded algorithm
performed the same alignment in 243 sec with only 5
nodes (and spent 168 sec using the same 9 nodes).
 The chart in Fig. 8 shows the idle times (in
percentage) achieved with the multithreaded algorithm
for the case with 500 sequences running on four
nodes. The time spent by the communication threads
is considered as idle time too, since it does not

correspond to data munching. From this figure it is
easy to see that the nodes running the slave threads
spend most of the time processing now (idle times
lower than 40%), with only the master node remaining
idle for more than 50% of the time.
 The performance improvement is a direct
consequence of the reduction in the communication costs
and the better scheduling policy introduced by thread
utilization. This also induced a better memory usage,
which enabled to run larger problems with fewer nodes.

Speedup evaluation: As already stated, the speedup
alone is not an important issue for this type of
application. It is important to reduce the time spent
processing, but it is more important to be able to solve
larger problems, which are constrained by memory
usage. Besides this consideration, the speedup provided
by the multithreaded algorithm is much better than the
speedup provided by Luo’s algorithm. This section
discusses the speedup for the alignment procedure.
 Prior to this analysis it must be said that results
published in Luo’s study cannot be compared to these.
The reasons for this are two. First, Luo executed its
implementation in ClustalW and if one compares
sequential results achieved there with those achieved
here will notice that the ClustalW version is remarkably
slower than the Muscle version (about ten times
slower). Second, the tests in Luo’s article were
conducted over very small datasets, with the largest one
aligning 80 sequences with less than 400 residues each,
while the smallest test presented here aligned 500
sequences with about 1000 residues each.
 The size of the dataset used here created some
approximations on the evaluation of the speedup. The
data to determine the speedup is the same that appears
on Fig. 6 and 8. The speedups presented here were
estimated using linear regression to determine the
execution time for a single node when it was
unavailable. Linear regression is a lower-bound
approximation since it is known that the execution time
curve follows in an exponential for the first few nodes
in the system. Fig. 9 presents the speedups calculated
this way for Luo’s algorithm and Fig. 10 presents the
speedups for the multithreaded algorithm.
 Comparing both figures it is easy to see that the
multithreaded approach shows speedups at least 50%
higher than in Luo’s algorithm. For larger sets of
sequences the difference is even higher. This difference,
as stated before, represents the ability to solve larger
problems introduced by the multithreaded algorithm.

Am. J. of Bioinformatics 1 (1): 50-63, 2012

59

Fig. 9: Speedup curves achieved with Luo’s algorithm

Fig. 10: Speedup curves achieved with multithreaded algorithm

DISCUSSION

Evaluating the variation in the sequence size: The
previous tests were concerned with the evaluation of the
alignment procedure for different number of sequences.
Another important aspect in the biological problem is
related to the size of each sequence, that is, the number
of residues in the sequence. It is expected that longer
sequences demand more time to be aligned, since there
are more symbols to be evaluated. The following test
shows how the multithreaded algorithm behaves when
the number of residues in each sequence is modified.
 The tests involved cases with 500 sequences with
sizes of 1000, 2000, 3000, 4000 and 5000 residues, also
retrieved from the NCBI database (Sherry et al., 2001).
The measured speedup for these cases are presented in
Fig. 11. It is evident that for longer sequences the

speedup curves are more scalable than for shorter
sequences, what is not surprising.
 The behavior of the multithreaded algorithm shows
that its efficiency scales with the growth in the problem
size. This is true either when the number of sequences or
their size increases. Therefore, the multithreaded approach
is an interesting improvement for progressive alignments.

The phylogenetic tree and the algorithm’s
scheduling efficiency: It has been demonstrated that
the multithreaded approach improves the alignment
efficiency. It should be clear also that its major
constraint is the data availability during the process of
task assignment. Since each task represents one node in
the phylogenetic tree and its input data comes from its
child nodes, it is expected that the tree topology should
influence the algorithm efficiency. During this section
this impact is evaluated

Am. J. of Bioinformatics 1 (1): 50-63, 2012

60

Fig. 11: Speedups achieved with sequence size variation (500 sequences)

Fig. 12: Running times for the multithreaded algorithm using a balanced tree and an unbalanced tree (1000

sequences)

The phylogenetic tree is produced during the initial
phases of the progressive alignment. This encompass a
pairwise alignment and the use of the score matrix to
generate a binary tree, which is usually incomplete. One
common approach to determine the phylogenetic tree is
the UPGMA method (Larkin et al., 2007), which was
modified to create a balanced binary tree from the
ordinary one. The evaluation was restricted to the
comparison of the ordinary and the balanced trees since
the balanced tree represents the optimal case for data
dependency (Wallace et al., 2004).
 It must be noted here that this study cannot be
applied in a straightforward manner. The problem here

is that the phylogenetic tree has a biological meaning
and modifications on its topology could produce results
that may not be reliable. In other words, if the
arrangement of the tree is modified, the sequence
similarities will not imply on nodes vicinity. This may
lead to alignments that are only locally optimal.
 Figure 12 shows the execution times for both,
balanced and unbalanced, trees for the case with 1000
sequences. The performance of the multithreaded
algorithm is always better than the unbalanced tree
execution. This result was expected since balanced trees
imply in less time spent waiting for synchronization and
data availability.

Am. J. of Bioinformatics 1 (1): 50-63, 2012

61

Table 1: Parallelism degree using balanced and unbalanced trees, for
the input with 1000 sequences

Number Parallelism degree-pd (N)
of slaves Balanced Not balanced
1 1.00 1.00
2 2.00 1.75
3 2.99 2.35
4 3.98 2.78
5 4.95 3.15
6 5.91 3.42
7 6.89 3.61
8 7.87 3.78
9 8.76 3.89
10 9.70 4.00
11 10.63 4.08
12 11.62 4.13
13 12.49 4.18
14 13.32 4.23
15 14.27 4.27

 The reduction in the synchronization may be
numerically determined by a metric equivalent to the
system usage. This metric is defined here as the
parallelism degree of the tree. The parallelism degree
for N processors (pd (N)) is determined as follows Eq. 2:

total number _ of _ alignment _ nodes
pd(N)

independent _ blocks

−= (2)

where, independent_blocks is the number of blocks
containing at most N node alignments that may be
executed in parallel. The number of alignments is known
from the phylogenetic tree. The number of independent
blocks is empirically determined during the progressive
alignment, using the list of ready nodes as reference.
 This metric shows how scalable the alignment
procedure is. It is easy to notice from Table 1 that when
the tree is balanced the problem presents a better
scalability. The obvious conclusion is that one should
build balanced phylogenetic trees. This is not the usual
procedure since the biological meaning must be preserved,
leading to unbalanced trees in most situations.
 An indirect consequence of balanced phylogenetic
trees is that intermediate nodes in the alignment
demand less data than nodes in the top levels of the
tree. Since balanced trees have more nodes in the
bottom levels, these nodes demand less data and can be
finished faster than upper nodes. This speeds up the
execution and reduces the demand for memory,
allowing its use in smaller clusters. Indeed, it was
possible to perform the alignment for 1000 sequences
with only one host using a balanced tree against two
nodes for the unbalanced one.

CONCLUSION

 In this study it was presented and evaluated a
multithreaded algorithm to perform multiple sequence

alignment in a progressive approach. The proposed
algorithm uses threads to eliminate the latency
introduced by synchronization and communication
constraints to process single tasks. It is aimed for
distributed memory systems, such as Beowulf clusters,
which have an intensive use in genomic research
nowadays.
 Another important contribution is the scheduling
policy. The scheduling and task allocation follows a
procedure that prioritizes pairings task-host where the
need of data movimentation is minimal. This
improvesthe performance since if the task allocated to a
given host demands for data already in that host, then
no time is spent on data migration (or interprocess
communication).
 The use of separate threads for communication and
processing, besides the task allocation procedure based
on data locality, allowed for performance
improvements in two ways:

• Achieving faster execution through the reduction in

the time needed for processes synchronization due
to data dependencies

• Reducing the need for data migration through an
efficient policy for tasks scheduling, based on the
amount of data that is ready for consumption

 These characteristics enabled a better use of
CPU cycles and also a better memory usage. Using
less CPU cycles and less memory enabled, at the
end, a reduction in the amount of resources needed to
run larger problems.
 Another relevant result presented here is the
algorithm scalability. It was shown that the
multithreaded algorithm is scalable to the number of
sequences as well as to the size of the sequences. This
means that it may be applied for problems and systems
of several sizes.
 One important remark here is these results were
achieved using larger datasets than those presented in
several proposed algorithms. Despite that, the execution
times were comparable to their execution times. This
indicates that the algorithm is actually very fast.
 In a different direction, it was also evaluated the
impact of the phylogenetic tree topology over the
algorithm performance. The algorithm has a
remarkable improvement if the tree is balanced, which
is not simple to achieve since the nodes in the tree
have biological meanings, restricting their
movimentation to reach balance.
 From the results achieved during this work it is
possible to devise some future steps towards a very
efficient parallel multiple sequence alignment tool.
These steps include:

Am. J. of Bioinformatics 1 (1): 50-63, 2012

62

• Investigating the use of B-trees to store the
phylogenetic tree, since B-trees are implicitly
balanced, aiming to evaluate the preservation of its
biological meaning

• Investigating strategies to improve speedup, even
for a larger number of hosts

• Implementing a ClustalW-Multithreaded version,
by inserting the multithreaded approach into
ClustalW

• Investigating the possibility of using a finer
granularity (parallelize the alignment of single
nodes) whenever the number of ready nodes is
lower than the number of idle hosts

 These aspects should improve even further the
performance achieved with the multithreaded
algorithm. As presented here, using threads is viable
and helpful. It enables solving multiple alignments in
small and much less expensive, clusters, being,
therefore, an interesting contribution to this field.

ACKNOWLEDGEMENT

 This study was partially supported by the Sao
Paulo State Research Foundation-FAPESP (Brazil)
under Grant No. 06/59592-0.

REFERENCES

Rashid, N.A.A., R. Abdullah and R.E.M. Al-Khatib,

2009. A survey of compute intensive algorithms
for ribo nucleic acids structural detection. J.
Comput. Sci., 5: 680-689. DOI:
10.3844/jcssp.2009.680.689

Arcuri, H.A., G.F.D. Zafalon, E.A. Marucci, C.E.
Bonalumi and N.J.F.D. Silveria et al., 2010.
SKPDB: A structural database of shikimate
pathway enzymes. BMC Bioinform., 11: 12-12.
DOI: 10.1186/1471-2105-11-12

Bhandarkar, S.M., S.A. Machaka, S.S. Chirravuri and J.
Arnold, 1998. Parallel computing for chromosome
reconstruction via ordering of DNA sequences
(1998). Parallel Comput., 24: 1177-1204.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.84.8250

Deng, X., E. Li, J. Shan and W. Chen, 2006. Parallel
implementation and performance characterization
of muscle. Proceedings of the 20th International
Parallel and Distributed Processing Symposium
Apr. 25-29, IEEE Xplore Press, pp: 1-7. DOI:
10.1109/IPDPS.2006.1639616

Du, Z., F. Lin and U.W. Roshan, 2005. Reconstruction
of large phylogenetic trees: A parallel approach.
Computational Biol. Chem., 29: 273-280. DOI:
10.1016/j.compbiolchem.2005.06.003

Ebedes, J. and A. Datta, 2004. Multiple sequence
alignment in parallel on a workstation cluster.
Bioinformatics, 20: 1193-1195. DOI:
10.1093/bioinformatics/bth055

Ishikawa, M., T. Toya, M. Hoshida, K. Nitta and A.
Ogiwara et al., 1993. Multiple sequence alignment
by parallel simulated annealing. Comput. Applied
Biosci., 9: 267-273. DOI:
10.1093/bioinformatics/9.3.267

Keibler, E., M. Arumugam and M.R. Brent, 2007. The
treeterbi and parallel treeterbi algorithms: Efficient,
optimal decoding for ordinary, generalized and pair
hmms. Bioinformatics, 23: 545-554. DOI:
10.1093/bioinformatics/btl659

Kleinjung, J., N. Douglas and J. Heringa, 2002.
Parallelized multiple alignment. Bioinformatics,
18: 1270-1271. DOI:
10.1093/bioinformatics/18.9.1270

Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna
and P.A. McGettigan et al., 2007. Clustal w and
clustal x version 2.0. Bioinformatics, 23: 2947-
2948. DOI: 10.1093/bioinformatics/btm404

Li, K.B., 2003. ClustalW-MPI: ClustalW analysis using
distributed and parallel computing. Bioinformatics,
19: 1585-1586. DOI:
10.1093/bioinformatics/btg192

Lopes, H.L. and G.L. Moritz, 2005. A distributed
approach for a multiple sequence alignment
algorithm using a parallel virtual machine.
Proceedings of the 27th Annual International
Conference of the Engineering in Medicine and
Biology Society, Jan. 17-18, IEEE Xplore Press,
Shanghai, pp: 2843-2846. DOI:
10.1109/IEMBS.2005.1617066

Luo, J., I. Ahmad, M. Ahmed and R. Paul, 2005.
Parallel multiple sequence alignment with dynamic
scheduling. Proceedings of the International
Conference on Information Technology: Coding
and Computing, Apr. 4-6, IEEE Xplor Press, pp: 8-
13. DOI: 10.1109/ITCC.2005.223

Palu, A.D., A. Dovier and E. Pontelli, 2007. A
constraint solver for discrete lattices, its
parallelization and application to protein structure
prediction. Software: Practice Exp., 37: 1405-1449.
DOI: 10.1002/spe.810

Sherry, S.T., M.H. Ward, M. Kholodov, J. Baker and L.
Phan et al., 2001. dbSNP: The NCBI database of
genetic variation. Nucl. Acid Res., 29: 308-311.
DOI: 10.1093/nar/29.1.308

Strumpen, V., 1995. Coupling hundreds of workstations
for parallel molecular sequence analysis. Software:
Practice Exp., 25: 291-304. DOI:
10.1002/spe.4380250305

Am. J. of Bioinformatics 1 (1): 50-63, 2012

63

Trystram, D. and J. Zola, 2005. Parallel multiple
sequence alignment with decentralized cache
support. Euro-Par 2005 Parallel Proces. DOI:
10.1007/11549468_133

Wallace, I.M., O. Orla and D.G. Higgins, 2004.
Evaluation of iterative alignment algorithms for
multiple alignment. Bioinformatics, 21: 1408-1414.
DOI: 10.1093/bioinformatics/bti159

Zola, J., D. Trystram, A. Tchernykh and C. Brizuela,
2006. Parallel multiple sequence alignment with
local phylogeny search by simulated annealing.
Proceedings of the 20th International Parallel and
Distributed Processing Symposium, Apr. 25-29,
IEEE Xplore Press, Rhodes Island, pp: 1-8. DOI:
10.1109/IPDPS.2006.1639536

