
American Journal of Applied Sciences 8 (11): 1176-1181, 2011
ISSN 1546-9239
© 2011 Science Publications

Corresponding author: Mohd. Marufuzzaman, Department of Electrical, Electronic and Systems Engineering,
 Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
 Tel: +603-89216316, Fax: +603-89216146

1176

Single Core Hardware Module to

Implement Boolean Function Classification Techniques

1Mohd. Marufuzzaman, 2Md. Mamun, 1Fazidah Hanim Hashim, 1Labonnah F. Rahman
1Department of Electrical, Electronic and Systems Engineering,

2Smart Enginering System Research Group,
Faculty of Engineering and Built Environment

Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Abstract: Problem statement: Boolean function classification plays an important role in the field like
technology mapping for digital circuit design, function mapping for minimization and the development
of universal logic modules. Approach: In this study, we present a single core hardware module to
implement Boolean function classification techniques on Altera FLEX10K FPGA device for lossless
data compression. The compression algorithm was performed by incorporating Boolean function
classification into Huffman coding. This allows compression that was more efficient because the data
had been categorized and simplified before the encoding was done. Simulation, timing analysis and
circuit synthesis were commenced to verify the functionality and performance of the designated
circuits which supports the practicality, advantages and effectiveness of the proposed single core
hardware implementation. Results: The result shows a higher compression ratio. The average
compression ratio was 25-37.5% from numerous testing with various text inputs with a maximum
clock frequency of 27.9 MHz. Conclusion: The hardware implementation demonstrated complete,
correct functionality and met all the initial system requirements.

Key words: FPGA, Boolean function, VHDL, Hardware implementation

INTRODUCTION

 The term Data Compression refers to the process of
reducing the amount of the required data representing a
given quantity of information. Data compression is
increasingly more and more important in the
development of computer and data communications
technology. Various data compression technologies
have been developed since the past few decades, using
different algorithms for different applications. Some of
the data compression techniques are Null Suppression,
Run-Length Encoding, Huffman coding, Arithmetic
coding, Lempel-Ziv-Welch coding, Discrete Cosine
Transform, Joint Photographic Expert Group and
Boolean Compression algorithm (Visweswariah et al.,
2000). Boolean function classification technique has
been traditionally designed for digital circuit
applications. The main feature of this technique is
because the functions belonging to some classes may be
implemented more efficiently than the general sum of
product implementation. Boolean function
classification plays an important role in the field like
technology mapping for digital circuit design, function

mapping for minimization and the development of
universal logic modules (Chang and Falkowski, 1996).
 The Field-Programmable Gate Arrays (FPGA)
offers a potential alternative to speed up the hardware
realization (Coussy et al., 2009; Marufuzzaman et al.,
2010; Reaz et al., 2007; Reaz et al., 2011a). From the
perspective of computer-aided design, FPGA comes
with the merits of lower cost, higher density and shorter
design cycle (Choong et al., 2005; Akter et al., 2008;
Reaz et al., 2011b). It comprises a wide variety of
building blocks. Each block consists of programmable
look-up table and storage registers, where
interconnections among these blocks are programmed
through the hardware description language (Reaz et al.,
2003; Amin et al., 2011). This programmability and
simplicity of FPGA made it favorable for prototyping
digital system. FPGA allows the users easily and
inexpensively realize their own logic networks in
hardware. FPGA also allows modifying the algorithm
easily and the design period for the hardware becomes
shorter by using FPGA (Choong et al., 2006; Mohd-
Yasin et al., 2004).

Am. J. Applied Sci., 8 (11): 1176-1181, 2011

1177

 In this studsy, we proposed the framework of
FPGA-based hardware realization of Boolean
compression algorithm by incorporating Boolean
function classification into Huffman encoding (Tsai and
Sadowska, 1997). By performing the Boolean function
classification, the binary data is grouped into their
classes and through Huffman encoding, the
compression is done in a more efficient way because
the data has been categorized and simplified before the
encoding is done. The result has higher compression
ratio. We had studied the existing Boolean
classification schemes that are suitable for using in data
compression. We also studied the new and alternative
classification schemes that can be implemented in the
algorithm. After finalizing the algorithm, the VHDL is
selected as the hardware description language to realize
the scheme. The use of VHDL for modeling is
especially appealing since it provides a formal
description of the system and allows the use of specific
description styles to cover the different abstraction
levels (architectural, register transfer and logic level)
employed in the design (Reaz et al., 2005; 2006). In the
computation of method, the problem is first divided into
small pieces; each can be seen as a submodule in VHDL.
Following the software verification of each submodule,
the synthesis is then activated. It performs the translations
of hardware description language code into an equivalent
netlist of digital cells. The synthesis helps integrate the
design work and provides a higher feasibility to explore a
far wider range of architectural alternative (Reaz et al.,
2007). In this study, to validate the effectiveness of the
method, various text inputs have been used. The method
provides a systematic approach for hardware realization,
facilitating the rapid prototyping of boolean function
classification schemes for lossless data compression.

Algorithm development: In Boolean function
classification algorithm, 16-bit of data bits are extracted
from data input. The first 16-bit Boolean block is then
used to generate fractal. The fractal is then used to match
with the fractals for all other bits in the data source.
 If there are identical matches between the first
fractal with the fractals in the data source, the counter
for the fractal is incremented. After, all the data bits are
matched with the first fractal, the first unmatched 16-bit
data will be used as the next fractal. This next fractal is
matched with the remaining bits of data. Again, when
there are matches between the second fractal with the
data source, the counter for the second fractal will be
incremented. The same algorithm continues until there
is no more unmatched data source. Fig 1 shows the
flow chart for the algorithm as explained.

Fig. 1: Boolean function classification algorithm

Fig. 2: Huffman encoding algorithm

Fig. 3: Decompression algorithm

Am. J. Applied Sci., 8 (11): 1176-1181, 2011

1178

When there is no more unmatched data source with the
fractal, the algorithm continues with the Huffman
encoding to compress the classified data source. From
the counters for each of the fractals, the frequency of
occurrence for each fractal can be determined. Based on
Huffman algorithm (Reaz et al., 2004; Huffman, 1952;
Mogaki et al., 2007), the data bits with higher number
of occurrence are to be encoded with shorter codes,
whereas the data bits with lower number of occurrence
are to be encoded with longer codes. The same concept
applies in this compression. For the fractal with higher
number of occurrence, the fractal is encoded with a
short code and saved with a header to enable the data to
be retrieved or decompressed. This is to be explained in
the decompression. Each of the fractals is encoded
using Huffman encoding and this completes the
Boolean compression. Fig 2 shows the flow chart for
Huffman encoding algorithm.
 The decompression algorithm involves re-
building the Huffman tree from a stored frequency
table in the header of the compressed file and
converting or decompressing the bit streams of
variable encode length into characters. Beginning at
the root node based on the header stored in the
compressed data and depending on the value of the bit,
the right or left branch of the Huffman tree is taken and
then return to read another bit for the next branch.
When the node selected is a leaf, which means that it has
no right and left child nodes, its character value is written
to the decompressed file and goes back to the root
node for the next bit. This algorithm is continued
until all the compressed bits of variable encode
length are decompressed. Figure 3 shows the
decompression algorithm.

VHDL implementation: The design started with two
blocks, compressor and decompressor. The input of the
compressor is integer stream, where 8-bit binary data is
read in as input for the compression. The data input is
classified and compressed into another form. The
classified data is shown in its respective class, which is
represented by the 3-bit class output pin. The output
data is a variable-length Huffman code, which is the
compressed data. This compressed data is available
from output pins. Each 8-bit data from the input will be
compressed according to the look-up table built. The
input data into the decompressor chip is a bit stream
with length of 1-bit to 6-bit and the class of 3-bit. The
output of the decompression is an 8-bit data.
 VHDL modeling had been performed using the
developed algorithm as discussed. The implementation

is started by building a statistical lookup table for all the
possible text inputs, ranging from a to z for small case,
A to Z for uppercase and some special characters like
semicolon, each with specific class. An ASCII-to-
binary program written in JavaScript is used to convert
the text input into binary bits. The ASCII table for each
of these characters is also referred. This ASCII table is
used as a reference to specify the bit patterns for each
of the input character. The bit patterns for each of the
input character are important in the formation of the
lookup table consisting of all possible text inputs. Since
the compressor can recognize 71 characters, these
characters are classified into their respective classes.
After determining the size of the class, the next step is
to determine the characteristic of the class. The
equations to determine the class using definition for
direct symmetric Boolean function is Eq. 1

f(z) = f(x, y) = f(y, x) (1)

where, x is initialized to 001 and y = m-1, where m is
the length of the encoded bits. x is initialized to 001
to represent the class for encoded data with length of
1 bit. Thus Eq. 2:

f(z) = f((001)2, (m-1)10) = f((m-1)10, (001)2) (2)

 For the function to be a direct symmetric function
f(z) represents function for classification of the
Boolean function derived using definition for direct
symmetric Boolean function.
 To perform the compression, the input data will
first match with all the predefined inputs in the lookup
table. When the input data is matched successfully, the
length of the encoded output will be shown and the
output will be displayed. The output is of variable
length. Thus, careful declaration of the vector size is
needed to ensure correct compilation and simulation.
The possible length of the encoded output ranges from
1 bit to 6 bits, which is lesser than the uncompressed
form of data for each character, which is 8 bits.
 For the decompression of the encoded data, the
class of the encoded data and the compressed data are
used as the inputs to run the decompression program.
Again, the compressed data may be of different length,
which varies from 1-bit to 6-bit. The inserted class and
compressed data will then be matched with all the
predefined data in the lookup table. When the inserted
class and compressed data matches with the predefined
data in the lookup table, then the output, which is the
original data before compression can be obtained.

Am. J. Applied Sci., 8 (11): 1176-1181, 2011

1179

(a)

(b)

Fig. 4: Simulation results for compression

(a)

(b)

Fig. 5: Simulation for decompression

Table 1: The Usage of Logic Resources in EPF10K10LC84-3
LCs used 366 LCs out of 576 (63.54%)
Number of nets 444
Number of inputs 1843
I/O cells 66
Cells in logic mode 323
Cells in cascade mode 43

Simulation: The system was coded in IEEE-compliant
VHDL and compiled and simulated using the
MAX+PLUS2. This provides an opportunity to detect
and correct errors early in the design process (Hunter,
1996; Ashenden, 2008). Both compression and
decompression modules was designed and tested in
isolation before being incorporated into the higher
levels of the design.
 Both compression and decompression modules
were first simulated individually to verify their
functionalities. Each module was fed a fix inputs and
the correct outputs were observed. After the successful
individual simulations were performed, the modules
were integrated together. This enables detailed
simulation at the top level.
 The results are generated using waveform editor.
The clock signal and outputs are shown in the timing
diagram. Few example simulations are shown in Fig.
4 and 5 using the 72-bit input binary data.
Compression simulation: In Fig. 4, the generated data
inputs are 00110101, 00110110, 00110111, 01100011,
00111001, 01101011, 01101100, 01110000 and
01110111. The encoded outputs are 0000, 0001, 0010,
1001, 0100, 1000, 1011, 0111 and 1110. The outputs
are the same as the output in the lookup table. This
yields that the compression is performed correctly. In
this simulation, the compression ratio is 50%. The best
compression ratio for this algorithm is 87.5%, which is
the case when all the inputs are having encoded output
of 1 bit. However, this rarely occurs since text inputs
usually consist of various different characters, which
have their respective class and output bits as defined in
the lookup table. The average compression ratio is 25-
37.5% from numerous testing with various text inputs.
This is verified from the lookup table as well, since
class 101 and class 110 have most input texts and their
encoded bits range from 5 bits to 6 bits.

Decompression simulation: In Fig. 5, the input is the
compressed data and class. The compressed data are 0000,
0001, 0010, 1001, 0100, 1000, 1011, 0111 and 1110. The
outputs are 00110101, 00110110, 00110111, 01100011,
00111001, 01101011, 01101100, 01110000 and
01110111. The outputs are exactly the original inputs,
which verify the correct functionalities of the algorithm.

Synthesis: Concerning the designated hardware
realization, The VHDL code is synthesized by
considering Altera FLEX10K: EPF10K10LC84-3
FPGA chip on LC84 package. The physical hardware
layout is generated using the synthesis tool Synplify

Am. J. Applied Sci., 8 (11): 1176-1181, 2011

1180

version 7.0. The FLEX 10 K families provide the
density, speed and features to integrate entire systems,
including multiple 32-bit buses into a single chip. A
comparatively low critical path frequency was achieved
which was 27.9 MHz. The design took a minimum
resource i.e., 366 logic cells, which is 63.54% of the
device EPF10K10LC84. Table 1 shows a details report
of the usage of resources.

CONCLUSION

 The objective of this project was to hardware
prototyping of Boolean compression algorithm using
VHDL. The Boolean function classification schemes
are incorporated into Huffman coding for a better
compression algorithm. The modules were successfully
compiled, simulated and synthesized with achieved
maximum frequency of 27.9 MHz and a minimum
resource usage of 63.5% of the total cells. The hardware
implementation demonstrated complete, correct
functionality and met all the initial system requirements.

REFERENCES

Akter, M., M.B.I. Reaz, F. Mohd-Yasin and F. Choong,

2008. Hardware implementations of an image
compressor for mobile communications. J.
Commun. Technol. Electr., 53: 899-910. DOI:
10.1134/S106422690808007X

Amin, M.S., M. Mamun, F.H. Hashim, J. Jalil and
H. Husain, 2011. Design and implementation of
novel artificial neural network based stock market
forecasting system on field-programmable gate
arrays. Am. J. Applied Sci., 8: 1054-1060. DOI:
10.3844/ajassp.2011.1054.1060

Ashenden, P.J., 2008. The Designer’s Guide to VHDL.
3rd Edn., Morgan Kaufmann, San Francisco,
ISBN-10: 0120887851, pp: 909.

Chang, C.H. and B.J. Falkowski, 1996. Operations on
boolean functions and variables in spectral domain
of arithmetic transform. Proceedings of the IEEE
International Symposium on Circuits and Systems,
May 12-15, IEEE Xplore Press, Atlanta, GA,
USA., pp: 400-403. DOI:
10.1109/ISCAS.1996.541986

Choong, F., M.B.I. Reaz and F. Mohd-Yasin, 2005.
Power quality disturbance detection using artificial
intelligence: A hardware approach. Proceedings of
the 19th IEEE International Parallel and
Distributed Processing Symposium, Apr. 4-8, IEEE
Xplore Press, Denver, USA., pp: 146a-146a. DOI:
10.1109/IPDPS.2005.348

Choong, F., M.B.L. Reaz, T.C. Chin and F. Mohd-
Yasin, 2006. Design and implementation of a data
compression scheme: A partial matching approach.
Proceedings of the International Confernce on
Computer Graphics, Imaging and Visualisation,
Jul. 26-28, IEEE Xplore Press, Sydney, Qld., pp:
150-155. DOI: 10.1109/CGIV.2006.94

Coussy, P., D.D. Gajski, M. Meredith and A. Takach,
2009. An introduction to high-level synthesis.
IEEE Design Test Comput., 26: 8-17. DOI:
10.1109/MDT.2009.69

Huffman, D.A., 1952. A method for the construction of
minimum-redundancy codes. Proc. IRE, 40: 1098-
1101. DOI: 10.1109/JRPROC.1952.273898

Hunter, R.D.M. and T.T. Johnson, 1996. Introduction to
VHDL. 1st Edn., Springer, London, ISBN:
0412731304, pp: 482.

Marufuzzaman, M., M.B.I. Reaz, M.S. Rahman and
M.A.M. Ali, 2010. Hardware prototyping of an
intelligent current dq PI controller for FOC PMSM
Drive. Proceedings of the International Conference
on Electrical and Computer Engineering, Dec. 18-
20, IEEE Xplore Press, Dhaka, pp: 86-88. DOI:
10.1109/ICELCE.2010.5700559

Mogaki, S., M. Kamada, T. Yonekura, S. Okamoto and
Y. Ohtaki et al., 2007. Time-stamp service makes
real-time gaming cheat-free. Proceedings of the 6th
ACM SIGCOMM Workshop on Network and
System Support for Games, (NSSG’ 07), ACM,
New York, USA., pp: 135-138. DOI:
10.1145/1326257.1326281

Mohd-Yasin, F., A.L. Tan and M.I. Reaz, 2004. The
FPGA prototyping of iris recognition for biometric
identification employing neural network.
Proceedings of the 16th International Conference
on Microelectronics, Dec 6-8, IEEE Xplore Press,
Malaysia, pp: 458-461. DOI:
10.1109/ICM.2004.1434697

Reaz, M.B.I., M.T. Islam, M.S. Sulaiman, M.A.M. Ali
and H. Sarwar et al., 2003. FPGA realization of
multipurpose FIR filter. Proceedings of the 4th
International Conferecne on Parallel and
Distributed Computing, Applications and
Technologies, Aug. 27-29, IEEE Xplore Press,
Malaysia, pp: 912-915. DOI:
10.1109/PDCAT.2003.1236448

Reaz, M.B.I., M.S. Sulaiman, F.M. Yasin and T.A.
Leng, 2004. IRIS recognition using neural network
based on VHDL prototyping. Proceedings of the
2004 International Conference on Information and
Communication Technologies: From Theory to
Applications, Apr. 19-23, IEEE Xplore Press,
Malaysia, pp: 463-464. DOI:
10.1109/ICTTA.2004.1307832

Am. J. Applied Sci., 8 (11): 1176-1181, 2011

1181

Reaz, M.B.I., F. Mohd-Yasin, S.L. Tan, H.Y. Tan and
M.I. Ibrahimy, 2005. Partial encryption of
compressed images employing FPGA. Proceedings
of the IEEE International Symposium on Circuits
and Systems, May 23-26, IEEE Xplore Press,
Malaysia, pp: 2385-2388. DOI:
10.1109/ISCAS.2005.1465105

Reaz, M.B.I., F. Choong and F. Mohd-Yasin, 2006.
VHDL modeling for classification of power quality
disturbance employing wavelet transform, artificial
neural network and fuzzy logic. Simulation, 82:
867-881. DOI: 10.1177/0037549707077782

Reaz, M.B.I., F. Choong, M.S. Sulaiman and F. Mohd-
Yasin, 2007. Prototyping of wavelet transform,
artificial neural network and fuzzy logic for power
quality disturbance classifier. J. Electric Power
Components Syst., 35: 1-17. DOI:
10.1080/15325000600815431

Reaz, M.B.I., M.I. Ibrahimy, F. Mohd-Yasin, C.S. Wei
and M. Kamada, 2007. Single core hardware
module to implement encryption in TECB mode.
Informacije MIDEM, LJUBLJANA, 37: 165-171.

Reaz, M.B.I., J. Jalil, H. Husain and B. Bais, 2011b.
Subway train braking system: A fuzzy based
hardware approach. Am. J. Applied Sci., 8: 740-
747. DOI: 10.3844/ajassp.2011.740.747

Reaz, M.B.I., M.S. Amin, F.H. Hashim and K.
Asaduzzaman, 2011a. Single core hardware
module to implement partial encryption of
compressed image. Am. J. Applied Sci., 8: 566-
573. DOI: 10.3844/ajassp.2011.566.573

Tsai, C.C. and M. Marek-Sadowska, 1997. Boolean
functions classification via fixed polarity reed-
muller forms. IEEE Trans. Comput., 46: 173-186.
DOI: 10.1109/12.565592

Visweswariah, K., S.R. Kulkarni and S. Verdu, 2000.
Universal coding of nonstationary sources. IEEE
Trans. Inform. Theory, 46: 633-1637. DOI:
10.1109/18.850707

